1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weeeeeb [17]
3 years ago
13

Practice Problem: True Stress and Strain A cylindrical specimen of a metal alloy 49.9 mm long and 9.72 mm in diameter is stresse

d in tension. A true stress of 376 MPa causes the specimen to plastically elongate to a length of 53.5 mm. If it is known that the strain-hardening exponent for this alloy is 0.1, calculate the true stress (in MPa) necessary to plastically elongate a specimen of this same material from a length of 49.9 mm to a length of 58.2 mm.
Engineering
1 answer:
Valentin [98]3 years ago
5 0

Answer:

The true stress required = 407 MPa

Explanation:

True Stress is the ratio of the internal resistive force to the instantaneous cross-sectional area of the specimen. True Strain is the natural log to the extended length after which load applied to the original length. The cold working stress – strain curve relation is as follows,

σ(t) = K (ε(t))ⁿ, σ(t) is the true stress, ε(t) is the true strain, K is the strength coefficient and n is the strain hardening exponent

True strain is given  by

Epsilon t =㏑ (l/l₀)

Substitute㏑(l/l₀) for ε(t)

σ(t) = K(㏑(l/l₀))ⁿ

Given values l₀ = 49.9mm, l =53.5mm , n =0.1 , σ(t) =376Mpa

376 x 10⁶ = K (㏑(53.5/49.9))^0.1

K = 376 x 10⁶/(㏑(53.5/49.9))^0.1

K = 490.78 MPa

Knowing the constant value would be same as the same material is being used in the second test, we can find out the true stress using the above formula replacing the value of the constant.

σ(t) = K(㏑(l/l₀))ⁿ

l₀ = 49.9mm, l = 58.2mm, n = 0.1, K = 490.78Mpa

σ(t) = 490.78 x 10⁶ x (㏑(58.2/49.9))^0.1

σ(t) = 407 MPa

The true stress necessary to plastically elongate the specimen is 407 MPa.

You might be interested in
What is the name of the first federation vessel in star trek hint 17?
Nitella [24]

Answer:

The Fesarius

Explanation:

It's the first vessel

7 0
2 years ago
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 lb and
k0ka [10]

Answer:

A.) 0.3088

B.) 0.0017

C.) part A

Explanation:

A.)

z1= \frac{\left(150-137\right)}{27.7}=0.4693

z2=\frac{\left(201-137\right)}{27.7}=2.3105

P(0.4693

B.)

z1=\frac{150-137}{27.7/ \sqrt{39}} =2.9309\\z2=\frac{201-137}{27.7/ \sqrt{39}}=14.4289

\\P(2.9309

C.) Since the seat performance for an individual pilot is more important than 39 different pilots.

3 0
4 years ago
Read 2 more answers
A water reservoir contains 108 metric tons of water at an average elevation of 84 m. The maximum amount of electric energy that
zavuch27 [327]

Answer:

24.72 kwh

Explanation:

Electric energy=potential energy=mgz where m is mass, g is acceleration due to gravity and z is the elevation.

Substituting the given values while taking g as 9.81 and dividing by 3600 to convert to per hour we obtain

PE=(108*9.81*84)/3600=24.72 kWh

8 0
4 years ago
The gas expanding in the combustion space of a reciprocating engine has an initial pressure of 5 MPa and an initial temperature
Anit [1.1K]

Answer:

a). Work transfer = 527.2 kJ

b). Heat Transfer = 197.7 kJ

Explanation:

Given:

P_{1} = 5 Mpa

T_{1} = 1623°C

                       = 1896 K

V_{1} = 0.05 m^{3}

Also given \frac{V_{2}}{V_{1}} = 20

Therefore, V_{2} = 1  m^{3}

R = 0.27 kJ / kg-K

C_{V} = 0.8 kJ / kg-K

Also given : P_{1}V_{1}^{1.25}=C

   Therefore, P_{1}V_{1}^{1.25} = P_{2}V_{2}^{1.25}

                     5\times 0.05^{1.25}=P_{2}\times 1^{1.25}

                     P_{2} = 0.1182 MPa

a). Work transfer, δW = \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

                                  \left [\frac{5\times 0.05-0.1182\times 1}{1.25-1}  \right ]\times 10^{6}

                              = 527200 J

                             = 527.200 kJ

b). From 1st law of thermodynamics,

Heat transfer, δQ = ΔU+δW

   = \frac{mR(T_{2}-T_{1})}{\gamma -1}+ \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

  =\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W

  =\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200

  = 197.7 kJ

6 0
3 years ago
Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tu
Thepotemich [5.8K]

Is this a question or a statement?

4 0
3 years ago
Other questions:
  • Two players find themselves in a legal battle over a patent. The patent is worth 20 for each player, so the winner would receive
    14·1 answer
  • In Visual Basic/Visual Studio, characteristics of controls, such as the Name of the control, or the Text displayed on the contro
    10·1 answer
  • A cast-iron tube is used to support a compressive load. Knowing that E 5 10 3 106 psi and that the maximum allowable change in l
    11·1 answer
  • What is the minimum efficiency of a functioning current-model catalytic converter? a. 60% b. 75% c. 80% d. 90%
    9·1 answer
  • Which of the following is true Select one: a. HTML stands for Hyper Text Markup Language is a language for describing web pages
    6·1 answer
  • A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by absorbing heat from geothermal water t
    8·1 answer
  • Refrigerant-134a enters an adiabatic compressor at -30oC as a saturated vapor at a rate of 0.45 m3 /min and leaves at 900 kPa an
    13·1 answer
  • What should always be done before beginning any diagnosis?
    9·1 answer
  • Which cod is the best whoever has the best awnser gets brainliest​
    12·1 answer
  • ceramics must be heated in order to harden the clay and make it durable. the equipment used to heat the clay
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!