Answer with explanation:
We are given that
Mass of ball,
75 g=
1 kg=1000 g
Height,

Horizontal velocity,
Mass of plate
a.Initial velocity of plate,
Velocity before impact=
Where 
Velocity after impact,
According to law of conservation of momentum

Substitute the values



Velocity of plate=1.69 m/s
b.Initial energy=
Final energy=
Final energy=
Energy lost due to compact=Initial energy-final energy=1.326-1.162=0.164 J
Answer:
Answer:u=66.67 m/s
Explanation:
Given
mass of meteor m=2.5 gm\approx 2.5\times 10^{-3} kg
velocity of meteor v=40km/s \approx 40000 m/s
Kinetic Energy of Meteor
K.E.=\frac{mv^2}{2}
K.E.=\frac{2.5\times 10^{-3}\times (4000)^2}{2}
K.E.=2\times 10^6 J
Kinetic Energy of Car
=\frac{1}{2}\times Mu^2
=\frac{1}{2}\times 900\times u^2
\frac{1}{2}\times 900\times u^2=2\times 10^6
900\times u^2=4\times 10^6
u^2=\frac{4}{9}\times 10^4
u=\frac{2}{3}\times 10^2
u=66.67 m/s
Answer:
Recall that Earth’s radius is 6.38 × 106 m and Earth’s mass is 5.97 × 1024 kg.
Explanation:
Answer:
the angle of incidence θ is 45.56 º
Explanation:
Given data
strikes the mirror before wall x = 30.7 cm
reflected ray strikes the wall y = 30.1 cm
to find out
the angle of incidence θ
solution
let us consider ray is strike at angle θ so after strike on surface ray strike to wall at angle 90 - θ
we will apply here right angle triangle rule that is
tan( 90 - θ) = y /x
tan( 90 - θ) = 30.1 / 30.7
90 - θ = tan^-1 (30.1/30.7)
90 - θ = 44.4345
θ = 45.56 º
the angle of incidence θ is 45.56 º