The answer is D, because the collision's between molecules are elastic, not inelastic.
Answer:
There are two different types of crust: thin oceanic crust that underlies the ocean basins, and thicker continental crust that underlies the continents. These two different types of crust are made up of different types of rock.
Explanation:
There ya go !
:) hoping this helped ya out
Answer:

Explanation:
Refractive Index: It is a measure to find how fast the light travels through a medium. It is ration of the speed of light in vacuum to speed of light in the medium. Speed of light is not constant and varies depending on the density of the medium.
In vacuum the speed of light is 300000 km/s and is denoted by c. When the light beam enters any medium the speed will decrease. Here it is given that the speed in plastic is v. Thus the refractive index(n) is given as:

It is a dimensionless no.
Answer:
Option 4
Explanation:
During heating actually heat transfer takes place from a body at higher temperature to a body at lower temperature and the heat transfer takes place until both attain the same temperature
Therefore heat transfer depends on the temperature of the systems
Now while comparing the thermal energies of the systems, if both the systems have same mass then the system which is at higher temperature has greater thermal energy when compared to the system which is at lower temperature
So in this case assuming that both the systems have same mass then the energy will leave the system with greater thermal energy and go into the system with less thermal energy as the system with greater thermal energy in this case will be at higher temperature and we are considering this assumption because thermal energy not only depends on temperature but also depends on mass of the system
A force of 43.8 N is required to stretch the spring a distance of 15.5 cm = 0.155 m, so the spring constant <em>k</em> is
43.8 N = <em>k</em> (0.155 m) ==> <em>k</em> = (43.8 N) / (0.155 m) ≈ 283 N/m
The total work done on the spring to stretch it to 15.5 cm from equilibrium is
1/2 (283 N/m) (0.155 m)² ≈ 3.39 J
The total work needed to stretch the spring to 15.5 cm + 10.4 cm = 25.9 cm = 0.259 m from equilibrium would be
1/2 (283 N/m) (0.259 m)² ≈ 9.48 J
Then the additional work needed to stretch the spring 10.4 cm further is the difference, about 6.08 J.