The central force acting on the electron as it revolves in a circular orbit is
.
The given parameters;
- <em>speed of electron, v = 2.2 x 10⁶ m/s</em>
- <em>radius of the circle, r = 4.63 x 10⁻¹¹ m</em>
<em />
The central force acting on the electron as it revolves in a circular orbit is calculated as follows;

where;
is mass of electron = 9.11 x 10⁻³¹ kg

Thus, the central force acting on the electron as it revolves in a circular orbit is
.
Learn more about centripetal force here:brainly.com/question/20905151
。☆✼★ ━━━━━━━━━━━━━━ ☾
The correct option would be A. solar.
We also use solar energy to produce electricity.
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
Answer:
P₁- P₂ = 91.1 10³ Pa
Explanation:
For this exercise we will use Bernoulli's equation, where point 1 is at the bottom of the house and point 2 on the second floor
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
P1-P2 = ½ ρ (v₂² - v₁²) + ρ g (y₂-y₁)
In the exercise they give us the speeds and the height of the turbid, so we can calculate the pressure difference
For heights let's set a reference system on the ground floor of the house, so we have 5m for the second floor and an entrance at -2m
P₁-P₂ = ½ 1.0 10³ (7² - 2²) + 1.0 10³ 9.8 (5 + 2)
P₁-P₂ = 22.5 10³ + 68.6 10³
P₁- P₂ = 91.1 10³ Pa
Answer:
i. 6.923 V
ii. The e.m.f. = 22.5 V
Explanation:
i. The given parameters are;
Length of potentiometer = 1 m
The resistance of the potentiometer = 10 Ω
The e. m. f. of the attached cell = 9 V
The current, I flowing in the circuit = e. m. f/(Total resistance)
The current, I flowing in the circuit = 9 V/(10 + 3) = 9/13 A
The potential difference, p.d. across the 1 m potentiometer wire = I × Resistance of the potentiometer wire
The p.d. across the potentiometer wire = 9/13×10 = 90/13 = 6.923 V
ii) Given that the 1 m potentiometer wire has a resistance of 10 Ω, 75 cm which is 0.75 m will have an e.m.f. given by the following relation;

Where:
E = e.m.f. of the balance point cell
= Resistance of 75 cm of potentiometer wire = 0.75×10 = 7.5 Ω
= Resistance of the cell in the circuit = 3 Ω
V = e.m.f. attached cell = 9 V

E = 7.5*3 = 22.5 V
The e.m.f. = 22.5 V