Answer:
Because the object should shrink its volume to zero, which is impossible
Explanation:
Let's talk about gases for simplicity. Ideal gases are governed by the ideal gas equation:

where
p is the gas pressure
V is the volume of the gas
n is the number of moles
R is the gas constant
T is the absolute temperature
From the formula, we see that T and V are directly proportional: therefore, in order for a gas to have an absolute temperature of zero, it must also have a volume of zero, which is impossible.
Answer:
A = m³/s³ = [L]³/[T]³ = [L³T⁻³]
B = m³s = [L³T]
Explanation:
We have the equation:
V = At³ + B/t
where, the dimensions of each variable are as follows:
V = m³ = [L]³
t = s = [T]
substituting these in equation, we get:
m³ = A(s)³ + B/s
for the homogeneity of the equation:
A(s)³ = m³
<u>A = m³/s³ = [L]³/[T]³ = [L³T⁻³]</u>
Also,
B/s = m³
<u>B = m³s = [L³T]</u>
Answer:
0.43 s
Explanation:
We have the following parameters:
Initial velocity, u = 7.4 m/s
Acceleration of gravity, g = 9.8 
Distance, s = 43 in + 10 ft = 1.092 m + 3.048 m = 4.14 m
Time, t = ?
Using the equation of motion
, we have


Using the quadratic formula
where a = 4.9, b = 7.4 and c = - 4.14, and solving for the positive value of t only, we have
s
Answer:
30 V
Explanation:
Given that:
The uniform electric field = 50 N/C
Voltage = 80 V
distance = 1.0 m
The potential difference of the electric field = Δ V
E_d = V₁ - V₂
50 × 1 = 80V - V₂
50 - 80 V = - V₂
-30 V = - V₂
V₂ = 30 V
The change in velocity from 30 m/s north to 40 m/s south is a change of 70 m/s south