Answer:
The density of the swimmer is 0.0342 lbm/in3.
This value makes sense as the density of the body is very similar to the water.
Explanation:
If the swimmers is floating, the weight of the swimmer must be equal to the upward buoyant force.
We can express the weight force as the product of density and volume of the swimmer.
Then

It makes sense as the density of the body is very similar to the water.
Answer:
4.21
Explanation:
use Avogadro's number
6.023 x 10^23
multiply this by 7 because you want to find 7 moles :
6.023 x 10^23 x 7 = 4.21
Answer:
Cl
Explanation:
The element Cl will have the strongest ionization energy from the given choices. Most non-metals have higher ionization energy compared to metals.
Ionization energy is the energy required to remove the most loosely held electron from the gaseous phase of an atom.
- As you go from left to right on the periodic table, it increases progressive
- From top to bottom, the ionization energy reduces significantly.
- The attractive force between the protons in the nucleus and the electrons plays a very important role.
- In metals, they have very large atomic radius, the attractive force on the outer electrons is very weak.
- This is not the case in non-metals
<span> Ksp = [Ag+]^2[CO32-]that should be it </span>
Answer:
5
Explanation:
just subtract 20-25 and 5 is left over which is how much the water when up with the rock.