Answer:
Mass = 15.20 g of KCl
Explanation:
The balance chemical equation for the decomposition of KClO₃ is as follow;
2 KClO₃ = 2 KCl + 3 O₂
Step 1: Calculate moles of KClO₃ as;
Moles = Mass / M/Mass
Moles = 25.0 g / 122.55 g/mol
Moles = 0.204 moles
Step 2: Find moles of KCl as;
According to equation,
2 moles of KClO₃ produces = 2 moles of KCl
So,
0.204 moles of KClO₃ will produce = X moles of KCl
Solving for X,
X = 2 mol × 0.204 mol / 2 mol
X = 0.204 mol of KCl
Step 3: Calculate mass of KCl as,
Mass = Moles × M.Mass
Mass = 0.204 mol × 74.55 g/mol
Mass = 15.20 g of KCl
Answer:
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)
Explanation:
First, we will write the molecular equation because it is the easiest to balance.
FeCl₃(aq) + 3 KOH(aq) → Fe(OH)₃(s) + 3 KCl(aq)
The full ionic equation includes all the ions and the molecular species.
Fe³⁺(aq) + 3 Cl⁻(aq) + 3 K⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s) + 3 K⁺(aq) + 3 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
Fe³⁺(aq) + 3 OH⁻(aq) → Fe(OH)₃(s)
Bbgfbsthgbdvdge fr that’s crazy d. Thx
Answer:
When heated, the molecules of the liquid in the thermometer move faster, causing them to get a little further apart. This results in movement up the thermometer. When cooled, the molecules of the liquid in the thermometer move slower, causing them to get a little closer together.
Explanation:
I hope it can help
Answer:
Sodium peroxide can be prepared on a large scale by the reaction of metallicsodium with oxygen at 130–200 °C, a process that generates sodium oxide, which in a separate stage absorbs oxygen: 4 Na + O2 → 2 Na2O. The ozone oxidizes the sodium to form sodium peroxide.