The distance traveled by the sprinter in meters is determined as 1.88 m.
<h3>Acceleration of the sprinter</h3>
The acceleration of the sprinter is the rate of change of velocity of the sprinter with time.
The acceleration of the sprinter is calculated as follows;
Apply Newton's second law of motion as follows;
F = ma
a = F/m
where;
- F is the applied force by the sprinter
- m is mass of the sprinter
- a is acceleration of the sprinter
a = 693 N / 64 kg
a = 10.83 m/s²
<h3>Distance traveled by the sprinter</h3>
The distance traveled by the sprinter is calculated as follows;
s = ut + ¹/₂at²
where;
- u is initial velocity = 0
s = ¹/₂at²
where;
- t is time of motion
- a is acceleration
s = (0.5)(10.83)(0.59²)
s = 1.88 m
Thus, the distance traveled by the sprinter in meters is determined as 1.88 m.
Learn more about distance here: brainly.com/question/2854969
#SPJ1
Answer:
Thermopile is an electronic device that converts thermal energy into electrical energy.
A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.
Answer:
μ =tanθ
Explanation:=
The ratio of the force of static friction and the normal reaction is equal to tanθ. F=mgsinθ. R = mgcosθ.
μ=tanθ
Answer: e. All of the above.
Explanation:
Rainfall, temperature, seasonal variability are the important factors which determines the type of vegetation will grow in a biome, the type of animals will adapt and survive. Also these factors also determine the fact that type of landforms will form over a region. These factors are necessary for the development of the biodiversity. A biodiversity can be define as the variability and variety of life forms that can be found in the ecosystem or biome.
Answer:
Tha ball- earth/floor system.
Explanation:
The force acting on the ball is the force of gravity when ignoring air resistance. At the moment the player releases the ball, until it reaches the top of its bounce, the small system for which the momentum is conserved is the ball- floor system. The balls exerts and equal and opposite force on the floor. <u>Here the ball hits the floor, because in any collision the momentum is conserved. Moment of the ball -floor system is conserved</u>. Mutual gravitation bring the ball and floor together in one system. As the ball moves downwards, the earth moves upwards, although with an acceleration on the order of 1025 times smaller than that of the ball. The two objects meet, rebound and separate.