The relation between the refractive index and the optical density of the material is a direct relation.
This means that the more the refractive index is, the more optically dense the material is.
Based on the above, when checking the given choices, the refractive index that represents the most optically dense material would be the largest refractive index which is:
<span>d. 2.65</span>
Answer:
a) i = -4.02 cm
, b) h’= 1,576 cm
Explanation:
a) The constructor equation is
1 / f = 1 / i + 1 / o
Where f is the focal length, i and o are the distance to the image and the object
Let's clear the distance to the image
1 / i = 1 / f - 1 / o
1 / i = 1 / -19 - 1 / 5.1
1 / i = 0.2487
i = -4.02 cm
b) let's use the expression of magnification
m = h’/ h = - i / o
h’= - h i / o
h’= 2.2 4.02 /5.1
h’= 1,576 cm
The initial speed of the bolt is not 58.86 m/s.
Let a be the acceleration of the rocket.
During the 4 sec lift off, the rocket has reached a height of
h = (1/2)*a*t^2
with t=4,
h = (1/2)*a^16
h = 8*a
Its velocity at 4 sec is
v = t*a
v = 4*a
The initial velocity of the bolt is thus 4*a.
During the 6 sec fall, the bolt has the initial velocity V0=-4*a and it drops a total height of h=8*a. From the equation of motion,
h = (1/2)*g*t^2 + V0*t
Substituting h0=8*a, t=6 and V0=-4*a into it,
8*a = (1/2)*g*36 - 4*a*6
Solving for a
a = 5.52 m/s^2
Centrifugal force of the earth's rotation as well as tidal forces caused by the moon's orbit and the sun's gravitational pull.
Answer:
The length of the Mercury column of thermometer at ice point is 20mm and 220mm at steam point . when the same Thermometer is placed in contact with another body ,it reads 5°c.what will the length of the Mercury column at the temperature?