Answer:
Explanation:
Length = 1.00 m
If the length is 1.0, the vertical distance pivot to bob is cos 35 = 0.819
At the lowest point, vertical distance is 1.0, so the change is the difference, 0.181 meter
The potential energy of that height is converted to kinetic energy of motion, which determines the speed.
PE = KE
mgh = ½mV²
V = √(2gh) = 1.88 m/s
D - tertiary consumer
This is because it is the farther up to food chain.
The two substances that are mostly likely examples of covalent bonding are Sucrose and Ethanol.
<h3 /><h3 /><h3>What is a covalent Bond?</h3>
- A covalent bond is a type of chemical bond that involves the sharing of pairs of electron between atoms.
Examples of compounds with covalent bond include the following;
- Distilled water
- Sucrose
- Ethanol
Olive oil is a mixture not a compound
Sodium Chloride & Potassium lodide are examples of ionic bond.
Thus, the two substances that are mostly likely examples of covalent bonding are Sucrose and Ethanol.
Learn more about covalent bonds here: brainly.com/question/12732708
Answer:
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Explanation:
Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.
Substituting the values of the variables into the equation, we have
ΔV = V₂ - V₁.
ΔV = 175 V - 33 V.
ΔV = 142 V
The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.
So, substituting the values of the variables into the equation, we have
ΔU = eΔV
ΔU = eΔV
ΔU = -1.602 × 10⁻¹⁹ C × 142 V
ΔU = -227.484 × 10⁻¹⁹ J
ΔU = -2.27484 × 10⁻²¹ J
ΔU ≅ -2.275 × 10⁻²¹ J
So, the required equation for the electric potential energy change is
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
The answer is C. You must divide your wavelength and your frequency to get your answer.