2w maybe? The square root of four is two...
Answer:
-A
Step-by-step explanation:
<h2>
<em><u>h</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>t</u></em><em><u> </u></em><em><u>h</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u>s</u></em><em><u> </u></em></h2>
<em><u>m</u></em><em><u>a</u></em><em><u>r</u></em><em><u>k</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u> </u></em><em><u>a</u></em><em><u>s</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u> </u></em><em><u>p</u></em><em><u>l</u></em><em><u>s</u></em>
Answer:
<em>First.</em> Let us prove that the sum of three consecutive integers is divisible by 3.
Three consecutive integers can be written as k, k+1, k+2. Then, if we denote their sum as n:
n = k+(k+1)+(k+2) = 3k+3 = 3(k+1).
So, n can be written as 3 times another integer, thus n is divisible by 3.
<em>Second. </em>Let us prove that any number divisible by 3 can be written as the sum of three consecutive integers.
Assume that n is divisible by 3. The above proof suggest that we write it as
n=3(k+1)=3k+3=k + k + k +1+2 = k + (k+1) + (k+2).
As k, k+1, k+2 are three consecutive integers, we have completed our goal.
Step-by-step explanation:

the fractions are set up so that each unit cancels out until its only meters/hour
you can multiply all the numerators together to get 72000 and all the denominators to get 1
72000 meters/1 hour
72000 meters in 1 hour
hope this helped