Answer:
a) 0.50575,
b) 0.042
Step-by-step explanation:
Example 1.5. A person goes shopping 3 times. The probability of buying a good product for the first time is 0.7.
If the first time you can buy good products, the next time you can buy good products is 0.85; (I interpret this as, if you buy a good product, then the next time you buy a good product is 0.85).
And if the last time I bought a bad product, the next time I bought a good one is 0.6. Calculate the probability that:
a) All three times the person bought good goods.
P(Good on 1st shopping event AND Good on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Good on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st and 2nd shopping events yield Good) =
(0.7)(0.85)(0.85) =
0.50575
b) Only the second time that person buys a bad product.
P(Good on 1st shopping event AND Bad on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Bad on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st is Good and 2nd is Bad shopping events) =
(0.7)(1-0.85)(1-0.6) =
(0.7)(0.15)(0.4) =
0.042
10^-8 would be .000000001 I believe lightning would be the correct answer because .00000001 is bigger than 10^-8 hope this is correct
Answer:

Step-by-step explanation:

<em>Replace it with y</em>

<em>Exchange the values of x and y</em>

<em>Solve for y</em>

<em>Subtracting 1 from both sides</em>

<em>Dividing both sides by 2</em>

<em>Replace it by </em>
So,

Answer:
A1) 125
A2) 47.5%
B) 30
Step-by-step explanation:
Remember 'of' in this sentence means times(*). % shows a certain number/100.
a1) 48% 'of' what number is 60?
(let unknown number be x)
48/100 *x=60
Solve the equation, and the answer is x=125
a2) what percentage 'of' 120 is 57?
(let the unknown percentage be x)
(x/100)*120=57
x=47.5%
b) 24 students= 80% of the total number of students
1%=24/80
100% of the total number of students=30
So, there are total of 30 students
ANSWER

EXPLANATION
From the table the values of x, are on the left and the values of f(x) are on the right.
To find f(-1), we look for the value under f(x) that corresponds to x=-1.
This value is 0.
Therefore
