I think the correct answer is C
12 N to the right (based on your POV)
The net force on the system:
F = m₂g - m₁gsin(∅)
F = 39.5 x 9.81 - 43 x 9.81 x sin(30)
F = 176.58 N
Now, we use F = ma to find the acceleration on each mass.
F = m₁a₁
a₁ = 176.58 / 43
a₁ = 4.11 m/s²
F = m₂a₂
a₂ = 176.58 / 39.5
a₂ = 4.47 m/s²
Answer:
The cannon has an initial speed of 13.25 m/s.
Explanation:
The launched cannonball is an example of a projectile. Thus, its launch speed can be determined by the application of the formula;
R = u
Where: R is the range of the projectile, u is its initial speed, H is the height of the cliff and g is the gravitaty.
R = 26.3 m, H = 19.3 m, g = 9.8 m/
.
So that:
26.3 = u
=
x 
691.69 =
x 
= 
= 
= 175.6104
⇒ u = 
= 13.2518
u = 13.25 m/s
The initial speed of the cannon is 13.25 m/s.
Link provided in other answer is a SCAM, don’t click on the link !!!!