In geology, <span>seismic waves that pass through the earth's interior are called body waves, as opposed to surface waves, which travel near the earth's surface. Body waves can be of two types: P-waves (primary), the fastest, and S-waves (secondary), which are slower.</span>
Velocity of vw bug is given as
towards north
velocity of imphala is given as
towards south
now we need to find velocity of imphala relative to bug


so the speed is 101 mpH towards south so correct option is C
The description of the question provided above points out to the famous Big Bang Theory. In addition, this theory is among the most accepted by cosmologists because it fits like a glove to the phenomenon the universe is experiencing right now: it is expanding and distances between celestial bodies are getting farther and farther.
In order from shortest to longest frequency, the electromagnetic waves can be ranked :
1. X-rays
2. Ultraviolet
3. Infrared
4. Microwave
X-rays has the shortest frequency which ranges between 30 petahertz to 30 exahertz. X-rays have the smallest wavelengths at 0.01-10 nanometers. Its energy ranges between 100eV to 100keV.
Explanation:
Given that,
Charge 1, 
Charge 2, 
Distance between charges, r = 0.0209 m
1. The electric force is given by :


F = -492.95 N
2. Distance between two identical charges, 
Electric force is given by :




Hence, this is the required solution.