The question is incomplete, here is the complete question:
Carbon tetrachloride reacts at high temperatures with oxygen to produce two toxic gases, phosgene and chlorine.
at 1,000 K
Calculate Kc for the reaction 
<u>Answer:</u> The value of
for the final reaction is 
<u>Explanation:</u>
The given chemical equations follows:

We need to calculate the equilibrium constant for the equation, which is:

As, the final reaction is the twice of the initial equation. So, the equilibrium constant for the final reaction will be the square of the initial equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:

Putting values in above equation, we get:

Hence, the value of
for the final reaction is 
The kinda of energy the involves the flow of positive charge is Electrical
Answer:
god says dont use any assault language okay?
Explanation:
Answer:
Option C is the correct. Valence electrons have a higher energy level than those in other filled shells
Explanation:
Electrons must lose energy to move from the first to the second shell. FALSE
The electrons always win energy to move from the first to the second shell.
All the electrons in an atom have similar energy levels FALSE.
They are not neccesary similar. In hydrogen these are the level energy -13.6 eV
, -3.4 eV
, -1.51 eV
, -85 eV and -54 eV
Electrons do not have potential energy, just kinetic energy. FALSE
They have both.
Valencia electrons are the last electrons in the last layer. They have as much energy as possible and are responsible for forming bonds with other elements.
Answer:
The high system pressure and relatively large chlorine molecule size.
Explanation:
Having the expression of the ideal gas, and clearing the pressure, we have:
P = nRT/V
Meanwhile, for a non-ideal gas we have the following equation:
P = (nRT / V-nb) - n2a/V2
In this equation, high pressures and low temperatures have an influence on nonideal gases.
Therefore, at high pressures, the molecules in a gas are closer together and have high intermolecular forces. On the other hand, at low temperatures, the kinetic energy of a gas is reduced, so that the intermolecular attractive forces are also reduced.