Answer:
9.63 L of NO
Explanation:
We'll begin by calculating the number of mole in 50.0 g of NH₄ClO₄. This can be obtained as follow:
Mass of NH₄ClO₄ = 50 g
Molar mass of NH₄ClO₄ = 14 + (4×1) + 35.5 + (16×4)
= 14 + 4 + 35.5 + 64
= 117.5 g/mol
Mole of NH₄ClO₄ =?
Mole = mass /molar mass
Mole of NH₄ClO₄ = 50/117.5
Mole of NH₄ClO₄ = 0.43 mole
Next, we shall determine the number of mole of NO produced by the reaction of 50 g (i.e 0.43 mole) of NH₄ClO₄. This can be obtained as follow:
3Al + 3NH₄ClO₄ –> Al₂O₃ + AlCl₃ + 3NO + 6H₂O
From the balanced equation above,
3 moles of NH₄ClO₄ reacted to produce 3 moles of NO.
Therefore, 0.43 mole of NH₄ClO₄ will also react to produce 0.43 mole of NO.
Finally, we shall determine the volume occupied by 0.43 mole of NO. This can be obtained as follow:
1 mole of NO = 22.4 L
Therefore,
0.43 mole of NO = 0.43 × 22.4
0.43 mole of NO = 9.63 L
Thus, 9.63 L of NO were obtained from the reaction.
Answer:(I didn’t really know where to Wrigh-)
Explanation: Gas bubbles appear after a chemical reaction has occurred and the mixture becomes saturated with gas. The chemical change that creates the gas is completed after the gas bubbles leave the mixture.
To interpret a graph or chart, read the title, look at the key, read the labels. Then study the graph to understand what it shows. Read the title of the graph or chart. The title tells what information is being displayed.
Hope this helps
get a good grade :)
It is the chlorophyll/chloroplast. The chlorophyll is the color
Answer:
A) Very stable.
Explanation:
A valence electron ring takes up to 8 valence electrons. If it has full rings, it is stable.