Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
Answer:
T = 15 kN
F = 23.33 kN
Explanation:
Given the data in the question,
We apply the impulse momentum principle on the total system,
mv₁ + ∑
= mv₂
we substitute
[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ × ( 45 × 1000 / 3600 )
F( 75 - 0 ) = 1.75 × 10⁶
The resultant frictional tractive force F is will then be;
F = 1.75 × 10⁶ / 75
F = 23333.33 N
F = 23.33 kN
Applying the impulse momentum principle on the three cars;
mv₁ + ∑
= mv₂
[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ × ( 45 × 1000 / 3600 )
F(75-0) = 1.125 × 10⁶
The force T developed is then;
T = 1.125 × 10⁶ / 75
T = 15000 N
T = 15 kN
Answer:
the welding gun liner regulates the shielding gas.
Explanation:
The purpose of the welding gun liner is to properly position the welding wire from the wire feeder till it gets to the nozzle or contact tip of the gun. <em>Regulation of the shielding gas depends on factors such as the speed, current, and type of gas being used. </em>In gas metal arc welding, an electric arc is used to generate heat which melts both the electrode and the workpiece or base metal.
The electric arc produced is shielded from contamination by the shielding gas. The heat generated by the short electric arc is low.
Answer:
a. 0.28
Explanation:
Given that
porosity =30%
hydraulic gradient = 0.0014
hydraulic conductivity = 6.9 x 10⁻4 m/s
We know that average linear velocity given as



The velocity in m/d ( 1 m/s =86400 m/d)
v= 0.27 m/d
So the nearest answer is 'a'.
a. 0.28