The load is placed at distance 0.4 L from the end of
area.
<h3>What is meant by torque?</h3>
The force that can cause an object to rotate along an axis is measured as torque. Similar to how force accelerates an item in linear kinematics, torque accelerates an object in an angular direction. A vector quantity is torque.
Let the beam is of length L
Now the stress on both the end is the same now we can say that torque on the beam due to two forces must be zero

also, we know that stress at both ends are same


Now from two equations we have

solving the above equation we have

so the load is placed at distance 0.4 L from the end of
area.
The complete question is:
47. the beam is supported by two rods ab and cd that have cross-sectional areas of
and
, respectively. determine the position d of the 6-kn load so that the average normal stress in each rod is the same.
To learn more about torque refer to:
brainly.com/question/20691242
#SPJ4
Answer:
Qcd=0.01507rad
QT= 0.10509rad
Explanation:
The full details of the procedure and answer is attached.
1. Renewable Resources = (Renewable means you can keep making it) = resources that can be replenished (such as trees)
2. Nonrenewable Resources = ( Nonrenewable means it can't be made once it is used up) = resources that are gone once they are used (such as fossil fuels)
3. Producer = ( produces something) = person who makes goods or provides services
4. Consumer = ( uses something) = person whose wants are satisfied by using goods and services
5. Allocate = ( put someplace) = distribute
6. Choice = option
Explanation:
Ohm's law is used here. V = IR, and variations. The voltage across all elements is the same in this parallel circuit. (V1 =V2 =V3)
The total supply current is the sum of the currents in each of the branches. (It = I1 +I2 +I3)
Rt = (8 V)/(8 A) = 1 Ω . . . . supply voltage divided by supply current
I3 = 8A -3A -4A = 1 A . . . . supply current not flowing through other branches
R1 = (8 V)/(3 A) = 8/3 Ω
R2 = (8 V)/(4 A) = 2 Ω
R3 = (8 V)/(I3) = (8 V)/(1 A) = 8 Ω
V1 = V2 = V3 = 8 V