Sound waves in air are a series of <span>periodic disturbances, </span><span>periodic condensations and rarefactions,</span><span> and high- and low-pressure regions. It is all of the above. The answer is letter D.</span>
When light moves from a medium with higher refractive index to a medium with lower refractive index, the critical angle is the angle above which there is no refracted ray, and it is given by:

(2)
where

is the refractive index of the second medium and

is the refractive index of the first medium.
We can find the ratio

by using Snell's law:

(1)
where

is the angle of incidence

is the angle of refraction
By using the data of the problem and re-arranging (1), we find

and if we use eq.(2) we can now find the value of the critical angle:
Answer:

Explanation:
First, we write the equations of motion for each axis. Since the crate is sliding with constant speed, its acceleration is zero. Then, we have:

Where T is the tension in the rope, F is the force exerted by the first worker, f_k is the frictional force, N is the normal force and mg is the weight of the crate.
Since
and
, we can rewrite the first equation as:

Now, we solve for
and calculate it:

This means that the crate's coefficient of kinetic friction on the floor is 0.18.
Answer:
The average velocity is 180 km/hr
Explanation:
Given;
initial velocity, u = 60 km per hour
final velocity, v = 120 km per hour
initial time = 1 hour
final time = 2 hour
Initial position = 60 km/h x 1 hour = 60 km
final position = 120 km/h x 2 hour = 240 km
The average velocity is given by;

Therefore, the average velocity is 180 km/hr