Answer:

Explanation:
<u>Dynamics</u>
When a particle of mass m is subject to a net force F, it moves at an acceleration given by

The particle has a mass of m=2.37 Kg and the force is horizontal with a variable magnitude given by

The variable acceleration is calculated by:


The instant velocity is the integral of the acceleration:


Integrating



Answer:
I already know the first one is electromagnetic but I don't know the second one sorry
Explanation:
Given:
Shaft Power, P = 7.46 kW = 7460 W
Speed, N = 1200 rpm
Shearing stress of shaft,
= 30 MPa
Shearing stress of key,
= 240 MPa
width of key, w = 
d is shaft diameter
Solution:
Torque, T = 
where,

= 59.365 N-m
Now,


d = 0.0216 m
Now,
w =
=
= 5.4 mm
Now, for shear stress in key
= 
we know that
T =
= F. 
⇒
= 
⇒
= 
length of the rectangular key, l = 4.078 mm
ANSWER:
F(h)= 230 N is the horizontal force you will need to move the pickup along the same road at the same speed.
STEP-BY-STEP EXPLANATION:
F(h) is Horizontal Force = 200 N
V is Speed = 2.4 m/s
The total weight increase by 42%
coefficient of rolling friction decrease by 19%
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.
F(h) = F(f)
F(h) = mg* u
m is mass
g is gravitational acceleration = 9.8 m/s^2
200 = mg*u
Since weight increases by 42% and friction coefficient decreases by 19%
New weight = 1+0.42 = 1.42 = (1.42*m*g)
New friction coefficient = μ = 1 - 0.19 = 0.81 = 0.81 u
F(h) = (0.81μ) (1.42 m g)
= (0.81) (1.42) (μ m g)
= (0.81) (1.42) (200)
= 230 N
Answer:
Spinning permanent magnets within an array of fixed permanent magnets.
Explanation:
Any relative motion between magnets (be they permanent or electromagnetic) and a coil of wire will induce an electric current in the coil.
What will not induce an electric current is the relative motion between the two coils of wire (because there is no change in magnetic field), or the relative motion between two magnets (there are no coils of wire to induce the current into).
Therefore, spinning permanent magnets within an array of fixed permanent magnets does not induce an electric current.
<em>In all other choices, coils of wire are there to be induced current into, and magnets are present to create changing magnetic fields. </em>