Answer:
E = 1.2443*10⁶ N/C
Explanation:
R = 41.6 cm = 0.416 m
Q₁ = 8.55 μC = 8.55*10⁻⁶C
Q₀ = 4.43 μC = 4.43*10⁻⁶C
r = 17.9 cm = 0.179 m
K = 9*10⁹ N*m²/C²
Since r < R we can apply Gauss's Law as follows
E = K*Q₀ / r²
⇒ E = (9*10⁹ N*m²/C²)*(4.43*10⁻⁶C) / (0.179 m)²
⇒ E = 1.2443*10⁶ N/C
I believe the answer is D
Answer: C= 0.406 M
Explanation:
Solution.
ν
=
0.730
m
o
l
;
ν=0.730mol;
V
=
1.8
⋅
1
0
3
m
L
=
1.8
L
;
V=1.8⋅10
3 mL=1.8L;
C=0.730mol
1.8 L=0.406 M
C= 1.8L
0.730mol =0.406M
The student made a mistake because he did not convert a unit of volume from milliliters to liters. After all, molarity is defined as the number of moles of solute per liter of solution.
The correct answer is Gems are rare
Answer: 1. The empirical formula is
2. The molecular formula is 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of P = 37.32 g
Mass of N = 16.88 g
Mass of F = 45.79 g
Step 1 : convert given masses into moles.
Moles of P =
Moles of N =
Moles of F =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For P = 
For N = 
For F =
The ratio of P: N: F= 1: 1: 2
Hence the empirical formula is 
The empirical weight of
= 1(31)+1(14)+2(19)= 82.98 g.
The molecular weight = 82.98 g/mole
Now we have to calculate the molecular formula.

The molecular formula will be=