<u>Answer:</u> 6.57 L of solution can be made.
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.....(1)
Given values:
Molarity of LiBr = 3.5 M
Moles of LiBr = 23 moles
Putting values in equation 1, we get:

Hence, 6.57 L of solution can be made.
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
Answer:
1 gramo de metano aporta 50.125 kilojoules.
1 gramo de metano aporta 48.246 kilojoules.
Explanation:
La cantidad de energía liberada por la combustión de una unidad de masa del hidrocarburo (
), en kilojoules por mol, es igual a la cantidad de energía liberada por mol de compuesto (
), en kilojoules por mol, dividido por su masa molar (
), en gramos por mol:
(1)
A continuación, analizamos cada caso:
Metano


1 gramo de metano aporta 50.125 kilojoules.
Octano


1 gramo de metano aporta 48.246 kilojoules.
Answer:
The equation is Fe₂O₃ + CO ⇒ Fe + CO₂.
The balanced reaction equation is Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂.
Explanation:
First, we have to write our equation. It's actually pretty straightforward - first we look for our reactants (looks like it's Fe₂O₃ and CO), then we look for our products (Fe and CO₂). Then, we have to balance it so that both sides have the same number of both element.
Currently, we have the equation Fe₂O₃ + CO ⇒ Fe + CO₂. There are 2 Fe atoms, 4 O atoms, and 1 C atom on the left side. There is 1 Fe atom, 2 O atoms, and 1 C atom on the right side.
First thing we can do is give our Fe on the right side a coefficient of 2. This will make it equivalent to the 2 Fe atoms on the left side:
Fe₂O₃ + CO ⇒ 2Fe + CO₂
Next, we need to make sure that we have the same number of C and O atoms on each side. This takes a little bit of thinking, but what we have to do is give CO a coefficient of 3 and CO₂ a coefficient of 3. This gives us 6 O atoms on the left side (when we include the O₃) and 6 O atoms on the right side (since there are 3 O₂ atoms and 3 times 2 is 6). Here's what that looks like:
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
And that's how I balanced the equation. It can be confusing, but with enough practice, it will get easier and easier. :)
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃