A. The correctly balanced equation is that in which the number of atoms of a certain element at the left-hand side is similar to that in the right hand side or the reactant side and product side, respectively. From the given equation, the answer would be,
C. Cl2 + 2NaI --> 2NaCl + I2
B. In the given chemical reaction above, heat is emitted such that it appears in the product side of the equation. Hence, this is an example of a combustion reaction.
C. Similar with the reasoning in letter A, the answer to this item is,
B. 2H2 + O2 --> 2H2O
Answer: A)
Explanation: when an electron is placed in a magnetic field, it experiences a force.
This force is given below as
F=qvB*sinθ
F = force experienced by charge.
q = magnitude of electronic charge
v = speed of electron
B= strength of magnetic field
θ = angle between magnetic field and velocity.
What defines the force exerted on the charge is the angle between the field and it velocity.
If magnetic field is parallel to velocity, then it means that θ=0° which means sin 0 = 0, which means
F = qvB * 0 = 0.
The charge being at rest has nothing to do with the angle between magnetic field strength and velocity.
Answer:
A. Their same forces repel each other, and their opposite forces attract each other.
Explanation:
As we know by the property of electric charge that similar charges repel each other and opposite charges attracts each other
So here we have similar situation in magnets also
Two similar poles or like poles of magnet i.e. North - North poles or South - South poles always repel each other
And also we can see that opposite poles of magnet each other i.e. North pole and south pole always attract each other.
SO here correct answer is
A. Their same forces repel each other, and their opposite forces attract each other.
The total flux through the cylinder is zero.
In fact, the electric flux through a surface (for a uniform electric field) is given by:

where
E is the intensity of the electric field
A is the surface
is the angle between the direction of E and the perpendicular to the surface, whose direction is always outwards of the surface.
We can ignore the lateral surface of the cylinder, since the electric field is parallel to it, therefore the flux through the lateral surface of the cylinder is zero (because
and
).
On the other two surfaces, the flux is equal and with opposite sign. In fact, on the first surface the flux will be

where r is the radius, and where we have taken
since the perpendicular to the surface is parallel to the direction of the electric field, so
. On the second surface, however, the perpendicular to the surface is opposite to the electric field, so
and
, therefore the flux is

And the net flux through the cylinder is
