They are attractive
They don’t depend on charge
Answer:
Q = c M ΔT where c is the heat capacity and M the mass present
Q2 / Q1 = M2 / M1 since the other factors are the same
M = ρ V where ρ is the density
M = ρ Π (d / 2)^2 where d is the diameter of the sphere
M2 / M1 = (2 D/2)^2 / (D/2)^2 = 4
It will take 4Q heat to heat the second sphere
(Not sure how many examples you need so I will put three for each)
Physical:
- As you now know, water in its natural condition is a colorless, odorless, and tasteless liquid. The hexagonal structure of water's crystals.
- The temperature at which a liquid's vapor pressure equals the pressure around it, turning the liquid into vapor, is known as the boiling point. We are aware that water reaches its boiling point at 100°C.
- The temperature at which a material transition from a liquid to a solid is known as the freezing point. The freezing point of water, which is 0°C or 32°F, is the temperature at which liquid water changes to solid ice.
Chemical:
- One of the most significant characteristics of water is its amphoteric tendency. Amphoteric refers to a substance's capacity to function as an acid or base. Water is neither acidic nor basic in its natural form. Its capacity to give and receive protons is the key justification. However, rainfall has a pH between 5.2 and 5.8, making it mildly acidic.
- Water is referred to be the all-purpose solvent. This is due to its chemical makeup, physical characteristics, high dielectric constant, and other factors that make it the most solvent material. It can attract other compound molecules, disabling their molecular forces and causing them to dissolve since hydrogen and oxygen both have positive and negative charges that are available.
- Water is a chemical molecule made up of two hydrogen atoms and one oxygen atom. The liquid condition of that substance is often referred to as water, and the solid and gas phases are respectively referred to as ice and steam.
1) 9.57 N
We have two forces applied on the apple:
- The force of gravity, in the downward direction:
W = 9.42 N
- The force exerted by the wind, in the horizontal direction (to the right):
Fw = 1.68 N
The two forces are perpendicular to each other, so we can find the magnitude of the net force by using Pythagorean's theorem.
Therefore, we have:

2) 
The direction of the net external force, measured from the downward vertical, can be measured using the following formula:

where
is the force in the horizontal direction
is the force in the vertical direction
In this problem,


and so we find:

A machine's distance mechanical advantage shows the effectiveness of the machine in moving an object a greater distance than the input distance. The equation for the distance mechanical advantage is the output distance divided by the input distance. Note: Most science books only consider force mechanical advantage. I HOPE THIS HELPS!