The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
Answer:
1.0s
Explanation:
distance = 1/2 × acceleration × time2 + intial speed × time
The rock cycle is a basic concept in geology that describes the time-consuming transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. As the adjacent diagram illustrates, each of the types of rocks is altered or destroyed when it is forced out of its equilibrium conditions. An igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and are forced to change as they encounter new environments. The rock cycle is an illustration that explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.
Plate movements drive the rock cycle by pushing rocks back into the mantle, where they melt and become magna again. Plate movements also cause the folding, faulting and uplift of the crust that move rocks through the rock cycle.
sources: wikapedia, Harmonybaddie on brainly
Answer:
Gas is a state of matter that has no fixed shape and no fixed volume.
In addition to solids and liquids, gases are also a physical state in which matter can occur. All gases have weight. Unlike solids and liquids, gases will occupy the entire container that encloses them.
matter is "anything that has mass and volume (occupies space)
<em>Gases have mass. The space between gas particles is empty. Gases can be formed as products in chemical reactions. Gas particles can form bonds between them under certain conditions</em>
<em> Gases have volume which isn't fixed </em>(no fixed volume)<em> and no fixed shape. Gases expand to fill the space available. They can also be compressed into a very small space.</em>
Explanation: