Using the formula v=f times lambada
then v=the speed of light.
and f=what’s we’re looking for
and lambada=the wavelength.
so then you sub what you have (v and lambada) in the formula.
then multiply the frequency(f) by the given wavelength and then solve for f
Explanation:
1-How many moles of NazCOs are in 10.0 ml of a 2.0 M solution?
2-How many moles of NaCl are contained in 100.0 ml of a 0.20 M solution?
3- What weight (in grams) of H2SO4 would be needed to make 750.0 ml of
2.00 M solution?
4-What volume (in ml) of 18.0 M H2SO4 is needed to contain 2.45 g H2S04?
The moment of inertia of the flywheel is 2.63 kg-
It is given that,
The maximum energy stored on the flywheel is given as
E=3.7MJ= 3.7×
J
Angular velocity of the flywheel is 16000
= 1675.51
So to find the moment of inertia of the flywheel. The energy of a flywheel in rotational kinematics is given by :
E = 

By rearranging the equation:
I = 
I = 2.63 kg-
Thus the moment of inertia of the flywheel is 2.63 kg-
.
Learn more about moment of inertia here;
brainly.com/question/13449336
#SPJ4
Answer:
Meter
Explanation:
The competition between the three quarterbacks is with respect to how far the ball would be thrown by each person, which is the distance covered by the ball. The thrown ball is an example of projectile, which would move over a certain distance.
With respect to the measure to be used in the competition, the appropriate SI unit is meter. This is the measure of length or distance covered.