Answer:
<em>Electric current is the movement of electrons through a wire. Electric current is measured in amperes (amps) and refers to the number of charges that move through the wire per second. If we want current to flow directly from one point to another, we should use a wire that has as little resistance as possible.</em><em>Current is directly proportional to voltage, inversely proportional to resistance. One of the most common electrical measurements you'll use is the watt, a unit of electrical power: W (Watts) = E (Volts) x I (Amperes). The quantity of electric charge is measured in coulombs.</em><em>They can even pass through bones and teeth. This makes gamma rays very dangerous. They can destroy living cells, produce gene mutations, and cause cancer.</em>
Explanation:
hey mate this is the best answer if you're studying engineering!
D sounds more formal than the rest.
Central Processing Unit(CPU) is regarded as the biggest power consumer
Suppose a tank is made of glass and has the shape of a right-circular cylinder of radius 1 ft. Assume that h(0) = 2 ft corresponds to water filled to the top of the tank, a hole in the bottom is circular with radius in., g = 32 ft/s2, and c = 0.6. Use the differential equation in Problem 12 to find the height h(t) of the water.
Answer:
Height of the water = √(128)/147456 ft
Explanation:
Given
Radius, r = 1 ft
Height, h = 2 ft
Radius of hole = 1/32in
Acceleration of gravity, g = 32ft/s²
c = 0.6
Area of the hold = πr²
A = π(1/32)² ---- Convert to feet
A = π(1/32 * 1/12)²
A = π/147456 ft²
Area of water = πr²
A = π 1²
A = π
The differential equation is;
dh/dt = -A1/A2 √2gh where A1 = Area of the hole and A2 = Area of water
A1 = π/147456, A2 = π
dh/dt = (π/147456)/π √(2*32*2)
dh/dt = 1/147456 * √128
dh/dt = √128/147456 ft
Height of the water = √(128)/147456 ft