1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
almond37 [142]
3 years ago
10

Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl

aced with polytropic processes having n = 1.3. The compression ratio is 10 for the modified cycle. At the beginning of compression, p1 = 1 bar and T1 = 310 K. The maximum temperature during the cycle is 2200 K. Determine
(a) The heat transfer and work in kJ per kg of air for each process in the modified cycle.
(b) The thermal efficiency.
(c) The mean effective pressure, in bar.

Engineering
1 answer:
Ulleksa [173]3 years ago
8 0

Answer:

The answers to the question are

(1) Process 1 to 2

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

(2) Process 2 to 3

W = 0

Q = 1135.376 kJ/kg

(3) Process 3 to 4

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

(4) Process 4 to 3

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency = 49.9 %

(c) The mean effective pressure is 9.44 bar

Explanation:

(a) Volume compression ratio \frac{v_1}{v_2}  = 10

Initial pressure p₁ = 1 bar

Initial temperature, T₁ = 310 K

cp = 1.005 kJ/kg⋅K

Temperature T₃ = 2200 K from the isentropic chart of the Otto cycle

For a polytropic process we have

\frac{p_1}{p_2}  = (\frac{v_2}{v_1} )^n Therefore p₂ = p₁ ÷ (\frac{v_2}{v_1} )^n = (1 bar) ÷ (\frac{1}{10} )^{1.3} = 19.953 bar

Similarly for a polytropic process we have

\frac{T_1}{T_2}  = (\frac{v_2}{v_1} )^{n-1} or T₂ = T₁ ÷ (\frac{v_2}{v_1} )^{n-1} = \frac{310}{0.1^{0.3}} = 618.531 K

The molar mass of air is 28.9628 g/mol.

Therefore R = \frac{8.3145}{28.9628} = 0.287 kJ/kg⋅K

cp = 1.005 kJ/kg⋅K Therefore cv = cp - R =  1.005- 0.287 = 0.718 kJ/kg⋅K

1). For process 1 to 2 which is polytropic process we have

W = \frac{R(T_2-T_1)}{n-1} = \frac{0.287(618.531-310)}{1.3 - 1}= 295.16 kJ/kg

Q =(\frac{n-\gamma}{\gamma - 1} )W = (\frac{1.3-1.4}{1.4-1} ) 295.16 kJ/kg = -73.79 kJ/kg

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

2). For process 2 to 3 which is reversible constant volume heating we have

W = 0 and Q = cv×(T₃ - T₂) = 0.718× (2200-618.531) = 1135.376 kJ/kg

W = 0

Q = 1135.376 kJ/kg

3). For process 3 to 4 which is polytropic process we have

W = \frac{R(T_4-T_3)}{n-1} = Where T₄ is given by  \frac{T_4}{T_3}  = (\frac{v_3}{v_4} )^{n-1} or T₄ = T₃ ×0.1^{0.3}

= 2200 ×0.1^{0.3}  T₄ = 1102.611 K

W =  \frac{0.287(1102.611-2200)}{1.3 - 1}= -1049.835 kJ/kg

and Q = 262.459 kJ/kg

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

4). For process 4 to 1 which is reversible constant volume cooling we have

W = 0 and Q = cv×(T₁ - T₄) = 0.718×(310 - 1102.611) = -569.09 kJ/kg

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency is given by

\eta = 1-\frac{T_4-T_1}{T_3-T_2} =1-\frac{1102.611-310}{2200-618.531} = 0.499 or 49.9 % Efficient

(c) The mean effective pressure is given by

p_{m}  = \frac{p_1r[(r^{n-1}-1)(r_p-1)]}{ (n-1)(r-1)}  where r = compression ratio and r_p = \frac{p_3}{p_2}

However p₃ = \frac{p_2T_3}{T_2} =\frac{(19.953)(2200)}{618.531} =70.97 atm

r_p = \frac{p_3}{p_2} = \frac{70.97}{19.953}  = 3.56

Therefore p_m =\frac{1*10*[(10^{0.3}-1)(3.56-1)]}{0.3*9} = 9.44 bar

Please find attached generalized diagrams of the Otto cycle

You might be interested in
Determine the location of the maximum bending moment. In the formula, w is the rate of load increase in lb ft and l is the lengt
Debora [2.8K]

https://vm.tiktok.com/ZSeMW4ttQ/ https://vm.tiktok.com/ZSeMW4ttQ/ https://vm.tiktok.com/ZSeMW4ttQ/ https://vm.tiktok.com/ZSeMW4ttQ/

4 0
3 years ago
Technician A says that a radio may be able to receive AM signals, but not FM signals if the antenna is defective. Technician B s
DIA [1.3K]

The response to whether the statements made by both technicians are correct is that;

D: Neither Technician A nor Technician B are correct.

<h3>Radio Antennas</h3>

In radios, antennas are the means by which signals to the sought frequency be it AM or FM are received.

Now, if the antenna is bad, it means it cannot pick any radio frequency at all and so Technician A is wrong.

Now, most commercial antennas usually come around a resistance of 60 ohms and so it is not required for a good antenna to have as much as 500 ohms resistance and so Technician B is wrong.

Read more about Antennas at; brainly.com/question/25789224

3 0
2 years ago
A brittle failure has extensive plastic deformation in the vicinity of the advancing crack. This process proceeds relatively slo
Tomtit [17]

Answer:

False ( b )

Explanation:

In a brittle failure the cracks spreads rapidly without a significant deformation, and the cracks are very unstable with the cracks extending without an increase in the amount of applied stress.

Therefore the above description in the question is false.

3 0
3 years ago
Consider a drainage basin having 60% soil group A and 40% soil group B. Five years ago the land use pattern in the basin was ½ w
victus00 [196]

Answer:

Please see the attached file for the complete answer.

Explanation:

Download pdf
3 0
4 years ago
A second inventor was driving down the highway in her Prius one day with her hand out the window. She happened to be driving thr
Eva8 [605]

Answer:

Explanation:

It wouldn't work because the wind energy she would be collecting would actually come from the car engine.

The relative wind velocity observed from a moving vehicle is the sum of the actual wind velocity and the velovity of the vehicle.

u' = u + v

While running a car will generate a rather high wind velocity, and increase the power generated by a wind turbine, the turbine would only be able to convert part of the wind energy into electricity while adding a lot of drag. In the end, it would generate less energy that what the drag casuses the car to waste to move the turbine.

Regenerative braking uses an electric generator connected to the wheel axle to recover part of the kinetic energy eliminated when one brakes the vehicle. Normal brakes dissipate this energy as heat, a regenerative brake uses it to recharge a batttery. Note that is is a fraction of the energy that is recovered, not all of it.

A "regenerative accelerator" makes no sense. Braking is taking kinetic energy out of the vehicle, while accelerating is adding kinetic energy to it. Cars accelerate using the power from their engines.

6 0
3 years ago
Other questions:
  • For some transformation having kinetics that obey the Avrami equation (Equation 11.17), the parameter n is known to have a value
    15·1 answer
  • Name four emerging technologies that could significantly impact how the construction industry conducts business.
    12·2 answers
  • Two objects labeled K and L have equal mass but densities 0.95Do and Do, respectively. Each of these objects floats after being
    13·1 answer
  • state four reasons why public participation is important in ensuring sustainable provision of services to the community​
    13·1 answer
  • _______________ is an effective way to manage waste in a shop.
    13·1 answer
  • We intend to measure the open-loop gain (A open ) of an actual operational amplifier. The magnitude of A_open is in the range of
    15·1 answer
  • Please help i really don't understand.
    8·1 answer
  • At what depth in water is the increased pressure five times greater than atmospheric pressure (101 kPa)?​
    12·1 answer
  • Basic C++ For Loop I'm trying to learn. Replit tells me that the for in the forloop is an error, but I don't know what's wrong.
    7·1 answer
  • To ensure that a vehicle crash is inelastic, vehicle safety designers add crumple zones to vehicles. A crumple zone is a part of
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!