Answer:
R= 1.25
Explanation:
As given the local heat transfer,

But we know as well that,

Replacing the values

Reynolds number is define as,

Where V is the velocity of the fluid and \upsilon is the Kinematic viscosity
Then replacing we have



<em>*Note that A is just a 'summary' of all of that constat there.</em>
<em>That is
</em>
Therefore at x=L the local convection heat transfer coefficient is

Definen that we need to find the average convection heat transfer coefficient in the entire plate lenght, so

The ratio of the average heat transfer coefficient over the entire plate to the local convection heat transfer coefficient is

Answer: the absolute static pressure in the gas cylinder is 82.23596 kPa
Explanation:
Given that;
patm = 79 kPa, h = 13 in of H₂O,
A sketch of the problem is uploaded along this answer.
Now
pA = patm + 13 in of H₂O ( h × density × g )
pA= 79 + (13 × 0.0254 × 9.8 × 1000/1000)
pA = 82.23596 kPa
the absolute static pressure in the gas cylinder is 82.23596 kPa
Answer:
(b) Given the Weibull parameters of example 11-3, the factor by which the catalog rating must be increased if the reliability is to be increased from 0.9 to 0.99.
Equation 11-1: F*L^(1/3) = Constant
Weibull parameters of example 11-3: xo = 0.02 (theta-xo) = 4.439 b = 1.483
Explanation:
(a)The Catalog rating(C)
Bearing life:
Catalog rating: 
From given equation bearing life equation,

we Dividing eqn (2) with (1)

The Catalog rating increased by factor of 1.26
(b) Reliability Increase from 0.9 to 0.99

Now calculating life adjustment factor for both value of reliability from Weibull parametres


Similarly

Now calculating bearing life for each value

Now using given ball bearing life equation and dividing each other similar to previous problem

Catalog rating increased by factor of 0.61
Answer:
According to many of the states' driving rules.
All vehicles of 3,000 pounds or more are required to have a brake system that makes them break as a response to the breaking of the vehicle's tow.
Explanation:
The reason behind this answer is that vehicles of more than 3,000 pounds are extremely dangerous and difficult to control. Therefore, when the tow breaks the automatic brake system is required. Because they are too big to be controlled, and if they are left without a brake system to reduce their damage they can destroy entire houses or other cars if this mechanism is not implemented.
Cut that photo by
1. Left click your mouse on the photo
2. Click cut
Then enter the file where you want to transfer and press
1. ctrl+v