Times the radius squared !
hope this helps :)))
As much as the human and physical capital in economy increases, there is a decrease in the marginal gain in economic growth that will diminish.
<u>Explanation:</u>
Low-income countries might have an advantage achieving greater worker productivity and economic growth in the future as their economic growth is faster than the high - income countries.
As much as the human and physical capital in economy increases, there is a decrease in the marginal gain in economic growth that will diminish. And this is called, the laws of diminishing returns.
Secondly, low - income countries find it easier in developing technologies than the high - income technologies especially countries like India and China.
High - income countries put effort in inventing new technologies, whereas low - income countries just improve and improvise their technology.
Answer:
80.16 m/s^2
at t=2 s
x=42.3 m
y=16 m
z=14 m
Explanation:
solution
The x,y,z components of the velocity are donated by the i,j,k vectors.

acceleration is a derivative of velocity with respect to time.
![a_{x}=\frac{d}{dt} v_{x}=\frac{d}{dt}[16t^{2}]=32t\\a_{y}=\frac{d}{dt} v_{y}=\frac{d}{dt}[4t^{3}]=12t^{2} \\a_{z}=\frac{d}{dt} v_{z}=\frac{d}{dt}[5t+2]=5](https://tex.z-dn.net/?f=a_%7Bx%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%20v_%7Bx%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B16t%5E%7B2%7D%5D%3D32t%5C%5Ca_%7By%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%20v_%7By%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B4t%5E%7B3%7D%5D%3D12t%5E%7B2%7D%20%5C%5Ca_%7Bz%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%20v_%7Bz%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B5t%2B2%5D%3D5)
evaluate acceleration at 2 seconds

the magnitude of the acceleration is the square root of the sum of the square of each component of the acceleration.

position is the integral of velocity with respect to time position at a time can be found by taking by taking the definite intergral of each component.

Answer:
β =
= 0.7071 ≈ 1 ( damping condition )
closed-form expression for the response is attached below
Explanation:
Given : x + 2x + 2x = 0 for Xo = 0 mm and Vo = 1 mm/s
computing a solution :
M = 1,
c = 2,
k = 2,
Wn =
=
next we determine the damping condition using the damping formula
β =
= 0.7071 ≈ 1
from the condition above it can be said that the damping condition indicates underdamping
attached below is the closed form expression for the response