Answer:
Under normal conditions, a magnetic material like iron doesn't behave like a magnet because the domains don't have a preferred direction of alignment. On the other hand, the domains of a magnet (or a magnetized iron) are all aligned in s specific direction.
A particle smaller than an atom or a <span>cluster of such particles </span>
The work done by the applied force on the block against the frictional force is 15.75 J.
<h3>
Work done by the applied force</h3>
The work done by the applied force is calculated as follows;
W = Fd
F - Ff = ma
where;
- F is applied force
- Ff is frictional force
Fcos(37) - μmgsin(37) = ma
Fcos(37) - (0.3)(4)(9.8)sin(37) = 4(0.2)
0.799F - 7.077 = 0.8
F = 9.86 N
W = Fdcosθ
W = 9.86 x 2 x cos(37)
W = 15.75 J
Thus, the work done by the applied force on the block against the frictional force is 15.75 J.
Learn more about work done here: brainly.com/question/25573309
#SPJ1
Answer:
Acceleration, 
Explanation:
Initial speed of the skater, u = 8.4 m/s
Final speed of the skater, v = 6.5 m/s
It hits a 5.7 m wide patch of rough ice, s = 5.7 m
We need to find the acceleration on the rough ice. The third equation of motion gives the relationship between the speed and the distance covered. Mathematically, it is given by :




So, the acceleration on the rough ice
and negative sign shows deceleration.