The gravitational field strength is approximately equal to 10 N.
<u>Explanation:</u>
Gravitational field strength is the measure of gravitational force acting on any object placed on the surface of the planet. Generally, the mass of the object is considered as 1 kg.
So the gravitational field strength will be equal to the gravitational force acting on the object.
The formula for gravitational field strength is

Here g is the gravitational field strength, m is the mass of the object placed on the surface and F is the gravitational force acting on the object.
Since, the mass of any object placed on the surface of earth will be negligible compared to the mass of Earth, so the mass of the object is considered as 1 kg.
Then the g = F
And 
Here G is the gravitational constant, M is the mass of Earth and m is the mass of the object placed on the surface, while r is the radius of the Earth.


So, the gravitational field strength is approximately equal to 10 N.
Answer:
mass: it is scalar quantity.
weight:it is a vector quantity.
Answer: λ2= 2.34 * 10^-6 C/m
Explanation: In order to calculate the value of the linear charge density of the insulating shell we have to multiply ρ* Volume of the hollow cylinder, so
Volume of cylinder:2*π*b*L *(b-a) where (b-a) is the thickness, then
λ2=Q/L = 634 *10^-6 C/m^3* 2*π*0.042 m*(0.042-0.26)== 2.34 μ C/m
Answer:
660 J/kg/°C
Explanation:
Heat lost by metal = heat gained by water
-m₁C₁ΔT₁ = m₂C₂ΔT₂
-(0.45 kg) C₁ (21°C − 80°C) = (0.70 kg) (4200 J/kg/°C) (21°C − 15°C)
C₁ = 660 J/kg/°C
Answer:
As the concentration of a solute in a solution increases, the freezing point of the solution <u><em>decrease </em></u>and the vapor pressure of the solution <em><u>decrease </u></em>.
Explanation:
Depression in freezing point :

where,
=depression in freezing point =
= freezing point constant
m = molality ( moles per kg of solvent) of the solution
As we can see that from the formula that higher the molality of the solution is directly proportionate to the depression in freezing point which means that:
- If molality of the solution in high the depression in freezing point of the solution will be more.
- If molality of the solution in low the depression in freezing point of teh solution will be lower .
Relative lowering in vapor pressure of the solution is given by :

= Vapor pressure of pure solvent
= Vapor pressure of solution
= Mole fraction of solute

Vapor pressure of the solution is inversely proportional to the mole fraction of solute.
- Higher the concentration of solute more will the be solute's mole fraction and decrease in vapor pressure of the solution will be observed.
- lower the concentration of solute more will the be solute's mole fraction and increase in vapor pressure of the solution will be observed.