Answer:
Their efforts would be expressed in units of Joules per second
Explanation:
The unit of their efforts can be derived from the formula of power which is given by the product of mass, acceleration and distance (the product is energy with unit joules) divided by time taken to complete the task (unit is seconds)
Therefore, the unit of their efforts would be joules per second
Answer:

Explanation:
From the question we are told that:
Height of window 
Height of window off the ground 
Time to fall and drop
Generally the Newton's equation motion is mathematically given by

Where



Generally the Newton's equation motion is mathematically given by

Where





Therefore the ball’s initial speed

Answer:
the car with the hay should slow to 16m/s if the bale of hay is dropped into it.
<span>4.5 m/s
This is an exercise in centripetal force. The formula is
F = mv^2/r
where
m = mass
v = velocity
r = radius
Now to add a little extra twist to the fun, we're swinging in a vertical plane so gravity comes into effect. At the bottom of the swing, the force experienced is the F above plus the acceleration due to gravity, and at the top of the swing, the force experienced is the F above minus the acceleration due to gravity. I will assume you're capable of changing the velocity of the ball quickly so you don't break the string at the bottom of the loop.
Let's determine the force we get from gravity.
0.34 kg * 9.8 m/s^2 = 3.332 kg m/s^2 = 3.332 N
Since we're getting some help from gravity, the force that will break the string is 9.9 N + 3.332 N = 13.232 N
Plug known values into formula.
F = mv^2/r
13.232 kg m/s^2 = 0.34 kg V^2 / 0.52 m
6.88064 kg m^2/s^2 = 0.34 kg V^2
20.23717647 m^2/s^2 = V^2
4.498574938 m/s = V
Rounding to 2 significant figures gives 4.5 m/s
The actual obtainable velocity is likely to be much lower. You may handle 13.232 N at the top of the swing where gravity is helping to keep you from breaking the string, but at the bottom of the swing, you can only handle 6.568 N where gravity is working against you, making the string easier to break.</span>
Answer: zero.
Justification:
The downward velocity of the sky diver just before starting to fall is zero, assuming that the helicopter is not moving but just hovering.
Before starting to fall, the velocity of the skydiver is the same of the helicopter, which is zero. It is only, once she jumps out of the helicopter that her weight is not supported by the helicopter and so the gravitational force of the Earth attracts the skydiver and she starts to gain velocity at a rate equal to g (around 9.81 m/s²).