The 'strength' of the electric field is the force on 1C of charge at that point.
At this 'certain location', the field is 40/5 = 8 newtons per coulomb = <u>8 volts</u>
The coefficient of linear expansion, given that the length of the pipe increased by 1.5 cm is 1.67×10¯⁵ /°F
<h3>How to determine the coefficient of linear expansion</h3>
From the question given above, the following data were obtained
- Original diameter (L₁) = 10 m
- Change in length (∆L) = 1.5 cm = 1.5 / 100 = 0.015 m
- Change in temperature (∆T) = 90 °F
- Coefficient of linear expansion (α) =?
The coefficient of linear expansion can be obtained as illustrated below:
α = ∆L / L₁∆T
α = 0.015 / (10 × 90)
α = 0.015 / 900
α = 1.67×10¯⁵ /°F
Thus, we can conclude that the coefficient of linear expansion is 1.67×10¯⁵ /°F
Learn more about coefficient of linear expansion:
brainly.com/question/28293570
#SPJ1
Answer:
the time needed for her to close the door is 1.36 s.
Explanation:
given information:
Force, F = 220 N
width, r = 1.40 m
weight, W = 790 N
height, h = 3.00 m
angle, θ = 90° = π/2
to find the times needed to close the door we can use the following equation
θ = ω₀t + 1/2 αt²
where
θ = angle
ω = angular velocity
α = angular acceleration
t = time
in this case, the angular velocity is zero. thus,
θ = 1/2 αt²
now, we can find the angular speed by using the torque formula
τ = I α
where
τ = torque
I = Inertia
we know that
τ = F r
and
I = 1/3 mr²
so,
τ = I α
F r = 1/3 mr² α
α = 3 F/mr
= 3 F/(w/g)r
= 3 (220)/(790/9.8) 1.4
= 5.85 rad/s²
θ = 1/2 αt²
π/2 = 1/2 5.85 t²
t = 1.36 s
Letters A and D appear to be correct.
Hello~
The answer to your question is C.
A charged object touches a neutral object.
Explanation:
Even though it would have to be a (negative) charge, that point is that it is charge, so weather it is negative or positive, they are both charged what so ever.
~Hope this Helps!~