Answer:
(A) –14m/s
(B) –42.0m
Explanation:
The complete solution can be found in the attachment below.
This involves the knowledge of motion under the action of gravity.
Check below for the full solution to the problem.
Answer:
Wait, that can happen? I'm sorry.
Explanation:
Answer: 6.36
Explanation:
Given
Radius of grindstone, r = 4 m
Initial angular speed of grindstone, w(i) = 8 rad/s
Final angular speed of the grindstone, w(f) = 12 rad/s
Time used, t = 4 s
Angular acceleration of the grinder,
α = Δw / t
α = w(f) - w(i) / t
α = (12 - 8) / 4
α = 4/4 = 1 rad/s²
Number of complete revolution in 4s =
Δθ = w(i).t + 1/2.α.t²
Δθ = 8 * 4 + 1/2 * 1 * 4²
Δθ = 32 + 1/2 * 16
Δθ = 32 + 8
Δθ = 40 rad/s
40 rad/s = 40/2π rpm = 6.36 rpm
Therefore, the grindstone does 6.36 revolutions during the 4 s interval
A and C Im pretty sure :)
The visible spectrum ranges from 390 nm to 700 nm. the visible spectrum consist of the red ( 620 - 750 nm ) , orange ( 590 - 620 nm ) , yellow ( 570 - 590 nm ) , green ( 495 - 570 nm ) , blue ( 450 - 495 nm ) and violet ( 380 - 450 nm ) so the wave length 449 nm will produce a violet color