The
equation for the photosynthesis reaction in which carbon dioxide and water
react to form glucose is .
The hear reaction is the difference between the bond dissociation energies in
the products and the bond dissociation energies of the reactants
The
reactant molecules have 12 C = O, 12 H - O bonds while the product molecules
have 5 C - C, 7 C – O, 5 H – O, and 6 O = O bonds. The average bond
dissociation energies for the bonds involved in the reaction are 191 for C = O,
112 for H – O, 83 C –C, 99 C – H, 86 C – O, 119 O = O.
Substitute
the average bond dissociation energies in the equation for and
calculate as follows
=
[12 (C=O) + 12 (H-O)] – [5(C-C) + 7(C-H) + 7 (C-O) + 5(H-O) + 6(O=O)]
=
[12x191 kcal/mol + 12x112 kcal//mol] – [5x83 kcal/mol + 7x99 kcal/mol + 7x86
kcal/mol + 5x112 kcal/mol + 6x119 kcal/mol]
=
3636 kcal/mol – 2984 kcal/mol = 652 kcal/mol x 4.184 Kj/1kcal = 2.73x10^3 kJ/mol
So,
enthalpy change for the reaction is 652 kcal/mol or 2.73x10^3 kJ/mol
<span> </span>
Answer:
the energy required to do work
Answer:
43 mole
Explanation:
Given data:
Number of atoms of Li = 2.6× 10²⁵ atoms
Number of moles = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
2.6× 10²⁵ atoms × 1 mole / 6.022 × 10²³ atoms
0.43 × 10² mole
43 mole
Answer:
true
covalent bonds are between non metals and nonmetals. and they are sharing electrons.