Explanation:
The valence electrons within an atom is the number of electrons in its outermost shell.
These electrons are used by an atom to react with one another. They determine the extent to which an atom is ready to combine either by losing, gaining or sharing these electrons.
- Every atom desires to have a completely filled outermost shell.
- Only the elements in group 8 have a complete octet.
- The need to attain stability is driven by the number of electrons in their valence shell.
- Therefore, some atoms are very reactive.
- Those needing one electrons to complete their octet and also those that must lose one electron are very reactive.
Answer:
Fluorine
Explanation:
Fluorine has the greatest attraction for electrons in any bond that it forms. The attraction of an atom for shared electrons is called its electronegativity.
Answer:
The volume will be 82.67 L
Explanation:
Charles's Law is the relationship between the volume and temperature of a certain amount of ideal gas. In this way, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

Having a certain volume of gas V1 that is at a temperature T1 at the beginning of the experiment, by varying the volume of gas to a new value V2, then the temperature will change to T2, and it will be true:

In this case, you know:
- V1= 40 L
- T1= 90 °C
- V2= ?
- T2= 186 °C
Replacing:

Solving:

V2= 82.67 L
<u><em>The volume will be 82.67 L</em></u>
If you are provided with Cation and an Anion with different oxidation states, then there ratio in the formula unit is adjusted as such that the oxidation number of one ion is set the coefficient of other ion and vice versa,
Example:
Let suppose you are provided with A⁺² and B⁻¹, so multiply A by 1 and B by 2 as follow,
A(B)₂
In statement we are given with Co⁺³ and SO₄⁻², so multiply Co⁺³ by 2 and SO₄⁻² by 3, hence,
Co₂(SO₄)₃
Result:
Co₂(SO₄)₃ is the correct answer.