1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
2 years ago
13

An Atwood's machine consists of two different masses, both hanging vertically and connected by an ideal string which passes over

a pulley. Let the masses be M1 and M2 and M2 = 2M1. Initially, M1 is held fixed a distance y below M2. Find the speed of the blocks when they are the same elevation (that is, the same horizontal position, by then each block has moved y/2).
Physics
1 answer:
Tasya [4]2 years ago
5 0

Answer:

V₁ = √ (gy / 3)

Explanation:

For this exercise we will use the concepts of mechanical energy, for which we define energy n the initial point and the point of average height and / 2

Starting point

    Em₀ = U₁ + U₂

    Em₀ = m₁ g y₁ + m₂ g y₂

Let's place the reference system at the point where the mass m1 is

     y₁ = 0

    y₂ = y

    Em₀ = m₂ g y = 2 m₁ g y

End point, at height yf = y / 2

    E_{mf} = K₁ + U₁ + K₂ + U₂

    E_{mf} = ½ m₁ v₁² + ½ m₂ v₂² + m₁ g y_{f} + m₂ g y_{f}

Since the masses are joined by a rope, they must have the same speed

     E_{mf} = ½ (m₁ + m₂) v₁² + (m₁ + m₂) g y_{f}

   E_{mf}= ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g y_{f}

How energy is conserved

   Em₀ =  E_{mf}

   2 m₁ g y = ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g y_{f}

   2 m₁ g y = ½ (3m₁) v₁² + (3m₁) g y / 2

   3/2 v₁² = 2 g y -3/2 g y

   3/2 v₁² = ½ g y

   V₁ = √ (gy / 3)

You might be interested in
A physics professor is pushed up a ramp inclined upward at 30.0° above the horizontal as she sits in her desk chair, which slide
11111nata11111 [884]

Answer:

V = 3.17 m/s

Explanation:

Given

Mass of the professor m = 85.0 kg

Angle of the ramp θ = 30.0°

Length travelled L = 2.50 m

Force applied F = 600 N

Initial Speed  u = 2.00 m/s

Solution

Work = Change in kinetic energy

F_{net}d = \frac{1}{2}mv^{2} - \frac{1}{2}mu^{2}\\\frac{2F_{net}d }{m} = v^{2} -u^{2}\\ v^{2} =\frac{2F_{net}d }{m} +u^{2}\\ v^{2} =\frac{2(600cos30 - 85\times 9.8 \times sin30) \times 2.5 }{85} +2.00^{2}\\ v^{2} = 10.066\\v = 3..17m/s

7 0
3 years ago
Which has more friction? wax paper, aluminum foil, wood
Nadusha1986 [10]
The answer to this  is  aluminum foil.
5 0
3 years ago
Read 2 more answers
•• CP Two blocks connected by a light horizontal rope sit at rest on a horizontal, frictionless surface. Block AA has mass 15.0
Firdavs [7]

Answer:

(a) T= 38.4 N

(b) m= 26.67 kg

Explanation:

We apply Newton's second law:

∑F = m*a (Formula 1)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Kinematics

d= v₀t+ (1/2)*a*t² (Formula 2)

d:displacement in meters (m)  

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s²

v₀=0, d=18 m , t=5 s

We apply the formula 2 to calculate the accelerations of the blocks:

d= v₀t+ (1/2)*a*t²

18= 0+  (1/2)*a*(5)²

a= (2*18) / ( 25) = 1.44 m/s² to the right

We apply Newton's second law to the block A

∑Fx = m*ax

60-T = 15*1.44

60 - 15*1.44 = T

T = 38.4 N

We apply Newton's second law to the block B

∑Fx = m*ax

T = m*ax

38.4 = m*1.44

m= (38.4) / (1.44)

m = 26.67 kg

7 0
3 years ago
What causes tendonitis?
Irina18 [472]

overuse of a muscle Answer:

Explanation:

6 0
2 years ago
Read 2 more answers
The moon does not have its own _____.
noname [10]
The moon does not have its own light. 
7 0
3 years ago
Read 2 more answers
Other questions:
  • A billion years ago, Earth and its moon were just 200000 kilometers apart. Express this distance in meters.​
    9·1 answer
  • WILL GIVE BRAINLIEST
    9·2 answers
  • If a football player collides with a goal post, what forces are at work?
    14·1 answer
  • Prove that..<br>please help<br>​
    7·1 answer
  • 1. How does the valence of an element relate to its chemical activity?
    9·1 answer
  • If a group of workers can apply a force of 1000 newtons to move a crate 20.0 meters on a frictionless ramp: How high up a ramp w
    11·1 answer
  • An impala is an African antelope capable of a remarkable vertical leap. In one recorded leap, a 45 kg impala went into a deep cr
    5·1 answer
  • Any girls come to talk on insta or here<br>​
    13·1 answer
  • Can anybody help me it says, Model the force that would cause each velocity change.
    5·2 answers
  • What are electromagnetic waves?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!