Answer:
The magnitude of the electric field are
and 
Explanation:
Given that,
Radius of inner shell = 11.0 cm
Radius of outer shell = 14.0 cm
Charge on inner shell 
Charge on outer shell 
Suppose, at r = 11.5 cm and at r = 20.5 cm
We need to calculate the magnitude of the electric field at r = 11.5 cm
Using formula of electric field

Where, q = charge
k = constant
r = distance
Put the value into the formula


The total charge enclosed by a radial distance 20.5 cm
The total charge is

Put the value into the formula


We need to calculate the magnitude of the electric field at r = 20.5 cm
Using formula of electric field

Put the value into the formula


Hence, The magnitude of the electric field are
and 
We shall convert all of the densities to lbs/gal, so the product of
BTU/lbs and lbs/gal gives us the basis of comparison, which was "ratio of energy to volume".
grams / ml x 1 lbs/454 grams → 1 lbs/ 454 ml
1 lbs/454 ml x 3785.41 ml/gal → 3785.41 lbs/454gal
Conversion of g/ml = 8.34 lbs/gal
Looking at each fuel:
Kerosene:
18,500 x (8.34 x 0.82) = 126,517 BTU/gal
Gasoline:
20,900 x (8.34 x 0.737) = 128,463 BTU/gal
Ethanol:
11,500 x (8.34 x 0.789) = 75,673 BTU/gal
Hydrogen:
61,000 x (8.34 x 0.071) = 36,120 BTU/gal
The best fuel in terms of energy to volume ratio is Gasoline.
Gallons required:
BTU needed / BTU per gallon
= 85.2 x 10⁹ / 128,463
= 6.6 x 10⁵ gallons
Beucase for example: humans rely on the sun for vitamins and to keep theyre skin healthy, animals for the same reason and plants rely on it for photosynthesis. hope that helps!
Answer:
40N
Explanation:
Since both weights are connected to one string, you can say that the tensions above each are equal to each other.
If you do the sum of forces for the 4kg mass, then the tension comes out to 40N (if we take gravity to be 10m/s²). But that seemed too good to be true, so I decided to do the work for the 7kg mass as well [which included finding the normal force (N) and plugging it into the sum of forces for the 7kg mass] to find that it also gives 40N as the answer.
If I were to put my process into steps:
- Write out the sum of Forces for both masses
- Set them equal to each other to find normal force (because this is the only unknown)
- Calculate and compare the two tensions to see if they are equal
*This all seems to line up perfectly, but do let me know if my answer doesn't match up with what you might find to he the answer later on.