Answer:
gases because they have a straight line and if it was solid it would have a flat line to show it melt first before the temperature increase.
Hope it helps
Answer:
i think D
hope this helps
let me know if i'm wrong i will change the answer
Explanation:
Im not sure, but here are a few of mine : Learn to be silent, and listen, take massive action and be proactive, listen, focus, and lastly, persist. Hope this helped! (:
k = spring constant of the spring = 100 N/m
m = mass hanging from the spring = 0.71 kg
T = Time period of the spring's motion = ?
Time period of the oscillations of the mass hanging is given as
T = (2π) √(m/k)
inserting the values in the above equation
T = (2 x 3.14) √(0.71 kg/100 N/m)
T = (6.28) √(0.0071 sec²)
T = (6.28) (0.084) sec
T = 0.53 sec
hence the correct choice is D) 0.53
The wavelength of the interfering waves is 3.14 m.
<h3>Calculation:</h3>
The general equation of a standing wave is given by:
y = 2A sin (kx) cos (ωt) ......(1)
The given equation represents the standing wave produced by the interference of two harmonic waves:
y = 3 sin (2x) cos 5t .......(2)
Comparing equations (1) and (2):
k = 2
We know that,
k = 2π/λ
λ = 2π/k
λ = 2 (3.14)/ 2
λ = 3.14 m
Therefore, the wavelength of the interfering waves is 3.14 m.
I understand the question you are looking for is this:
Two harmonic waves traveling in opposite directions interfere to produce a standing wave described by y = 3 sin (2x) cos 5t where x is in m and t is in s. What is the wavelength of the interfering waves?
Learn more about interfering waves here:
brainly.com/question/2910205
#SPJ4