Answer:
Everything is made up of tiny particles called Matter
Answer:
The mass of the ball is 0.23 kg
Explanation:
Given that
radius ,r= 3.74 cm
Density of the milk ,ρ = 1.04 g/cm³ = 1.04 x 10⁻³ kg/cm³
Normal force ,N= 9.03 x 10⁻² N
The volume of the ball V


V= 219.13 cm³
The bouncy force on the ball = Fb
Fb = ρ V g
Fb + N = m g
m=Mass of the ball = Density x volume
m = γ V , γ =Density of the Ball
ρ V g + N = γ V g ( take g= 10 m/s²)


γ = 0.00108 kg/cm³
m = γ V
m = 0.00108 x 219.13
m= 0.23 kg
The mass of the ball is 0.23 kg
Answer:
The entropy change of the sample of water = 6.059 x 10³ J/K.mol
Explanation:
Entropy: Entropy can be defined as the measure of the degree of disorder or randomness of a substance. The S.I unit of Entropy is J/K.mol
Mathematically, entropy is expressed as
ΔS = ΔH/T....................... Equation 1
Where ΔH = heat absorbed or evolved, T = absolute temperature.
<em>Given: If 1 mole of water = 0.0018 kg,</em>
<em>ΔH = latent heat × mass = 2.26 x 10⁶ × 1 = 2.26x 10⁶ J.</em>
<em>T = 100 °C = (100+273) K = 373 K.</em>
<em>Substituting these values into equation 1,</em>
<em>ΔS =2.26x 10⁶/373</em>
ΔS = 6.059 x 10³ J/K.mol
Therefore the entropy change of the sample of water = 6.059 x 10³ J/K.mol
Answer:
Take the measurement of the distance (d) with a meter rule (in meters) and also measure the time (t) of the travel in seconds with a stopwatch.
question: What is the speed of the cart?
Explanation:
The speed of an object in motion is the distance covered by the object with respect to time, that is, the ratio of distance covered to the time taken to reach that distance.
Speed = distance / time
= d (in meters m) / t (in seconds s) = m/s
Here we apply conservation of linear momentum. The momentum of the truck with cargo and without cargo remains constant. That is,
.
Here
are initial mass and velocity.
are final mass and velocity. Here
and
.
The velocity of the truck be after its cargo is taken off is
