Time taken to complete one oscillation for a pendulum is Time Period, T = 0.5 s
Frequency of the pendulum oscillation = 1 / Time Period => f = 1 / T = 1 / 0.5
Frequency f = 2 Hz
It's either A or B because it starts off as nuclear energy.
Answer:
160 W
Explanation:
Power is the ratio of work to time:
(1600 J)/(10 s) = 160 J/s = 160 W
First we gotta use an equation of motion:

Our vertical distance d= 100 m, initial vertical speed u = 0 m/s (because velocity is fully horizontal), and vertical acceleration a = 9.8 m/s2 because of gravity. Let's plug it all in!

Now we just need to solve for t:

Hit the calculators, and you'll get 4.5 seconds!
Electromagnetic radiation are represented in waves. Each type of wave has a certain shape and length. The distance between two peaks in a wave is called the wavelength. This value is equal to the speed of light divided by the frequency.
Wavelength = c/f
Wavelength = 3x10^8 / <span>5.42x10^15
</span><span>Wavelength = 5.54 x 10^-8 m = 55.35 nm</span>