I think the correct answer from the choices listed above is the second option. For endothermic reactions, the reactants have less energy than the products. Which would mean that energy should be added to the reaction for it to proceed. Hope this answers the question.
Answer:
The magnitude of the resultant decreases from A+B to A-B
Explanation:
The magnitude of the resultant of two vectors is given by

where
A is the magnitude of the first vector
B is the magnitude of the second vector
is the angle between the directions of the two vectors
In the formula, A and B are constant, so the behaviour depends only on the function
. The value of
are:
- 1 (maximum) when the angle is 0, so the magnitude of the resultant in this case is

- then it decreases, until it becomes 0 when the angle is 90 degrees, where the magnitude of the resultant is

- then it becomes negative, and continues to decrease, until it reaches a value of -1 when the angle is 180 degrees, and the magnitude of the resultant is

Answer:
<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

- v is image distance
- u is object distance, u is 10 cm
- f is focal length, f is 5 cm

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>
• Let's derive this formula from the lens formula:

» Multiply throughout by fv

• But we know that, v/u is M

- v is image distance, v is 10 cm
- f is focal length, f is 5 cm
- M is magnification.

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>
- Image is magnified
- Image is erect or upright
- Image is inverted
- Image distance is identical to object distance.
Answer:

Explanation:
The motion of the vehicule on a highway curve can be modelled by the following equation of equilibrium:

The maximum speed is:



Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m