To solve this problem we will apply the concept related to the electric field. The magnitude of each electric force with which a pair of determined charges at rest interacts has a relationship directly proportional to the product of the magnitude of both, but inversely proportional to the square of the segment that exists between them. Mathematically can be expressed as,

Here,
k = Coulomb's constant
V = Voltage
r = Distance
Replacing we have


Therefore the magnitude of the electric field is 
Answer:
Reindeer
Explanation:
High traction to walk on ice
Woolly fur to keep warm
The answer is B. 1,4, and 6
What a fan does is create a wind chill effect. ... By blowing air around, the fan makes it easier for the air to evaporate sweat from your skin, which is how you eliminate body heat. The more evaporation, the cooler you feel.
When they say use energy, you want to use
Total energy = potential energy + kinetic energy = mgh + 1/2mv²
I assume you mean 200 g ball,
so, we know the total distance traveled is going to be 13 - 1.3 = 11.7 m
If the ball just makes it to the top ( 13 m ) , then the ball will stop moving and the kinetic energy will be 0,
therefore, the potential energy at the top will be the total energy of the system = mgh
from this, we say that mgh = 1/2mv² solve for v
<span>
v = sqrt (2gh) = 15.2 m/s </span>