Answer:
M au = Fs - M g au = upwards acceleration; Fs = scale reading
Fs = M (au + g) scalar quantities where g is positive downwards and au is positive upwards - Fs is the net force acting on the person
If the acceleration is zero Fs = M g and the scale reads the persons weight
If the elevator is decelerating then au is negative and the scale reading Fs = (g - au) M and the scale reading is less than the weight of the person
Answer:
The answer is given below
Explanation:
u is the initial velocity, v is the final velocity. Given that:

a)
The final velocity of cart 1 after collision is given as:

The final velocity of cart 2 after collision is given as:

b) Using the law of conservation of energy:

Answer:
magnitude of the magnetic field 0.692 T
Explanation:
given data
rectangular dimensions = 2.80 cm by 3.20 cm
angle of 30.0°
produce a flux Ф = 3.10 ×
Wb
solution
we take here rectangular side a and b as a = 2.80 cm and b = 3.20 cm
and here angle between magnitude field and area will be ∅ = 90 - 30
∅ = 60°
and flux is express as
flux Ф =
.................1
and Ф = BA cos∅ ............2
so B =
and we know
A = ab
so
B =
..............3
put here value
B =
solve we get
B = 0.692 T
This question is in complete.The question is
A coin with a diameter 3.00 cm rolls up a 30.0° inclined plane. The coin starts out with an initial angular speed of 60.0 rad/s and rolls in a straight line without slipping. If the moment of inertia of the coin is(1/2) MR² , how far will the coin roll up the inclined plane (length along the ramp)? Hint: Conservation of mechanical energy.
Answer:
distance=0.124 m
Explanation:
