<span>238,900 mi hope it helps :)</span>
Alkali metals: left column of your periodic table (not hydrogen, but anything below it). They have one valence electron, which they are happy to share in a reaction.
Halogens: second column from the right of your periodic table. They are one electron short of a full shell, so they are reactive in the opposite way that alkalis are--they want electrons.
Atomic number (number of protons) is the big number on the periodic table square. Hydrogen's is 1.
Atomic mass is a little number down below. For example, Hydrogen's is 1.008.
Neutrons are a tricky subject, because different isotopes of the same element can have different numbers of neutrons. You can't generally get this from the atomic mass, because the atomic mass is a weighted average of naturally occurring isotopes. Hydrogen can have 0,1, or 2 neutrons. To answer this, you'd have to choose a particular isotope from the table of isotopes (a completely different chart from the periodic table) which has a certain number of neutrons: n = weight - Z.
Valence electrons are the electrons in the outermost shell. (The column of the table).
<span>
Number of principal shells is the row of the periodic table. </span>
Answer:
time will elapse before it return to its staring point is 23.6 ns
Explanation:
given data
speed u = 2.45 × m/s
uniform electric field E = 1.18 × N/C
to find out
How much time will elapse before it returns to its starting point
solution
we find acceleration first by electrostatic force that is
F = Eq
here
F = ma by newton law
so
ma = Eq
here m is mass , a is acceleration and E is uniform electric field and q is charge of electron
so
put here all value
9.11 × kg ×a = 1.18 × × 1.602 ×
a = 20.75 × m/s²
so acceleration is 20.75 × m/s²
and
time required by electron before come rest is
use equation of motion
v = u + at
here v is zero and u is speed given and t is time so put all value
2.45 × = 0 + 20.75 × (t)
t = 11.80 × s
so time will elapse before it return to its staring point is
time = 2t
time = 2 ×11.80 ×
time is 23.6 × s
time will elapse before it return to its staring point is 23.6 ns
Answer:
1250 J
Explanation:
Work is said to be done when a force causes an object to move over a distance. The amount of work done (W) is calculated by multiplying the force by the distance traveled.
That is;
W = F × d
Where;
W = work done (J or N/m)
F = force (N)
d = distance (m)
Based on the information provided in this question, F = 5000N, d = 0.25m
Hence;
W = F × d
W = 5000 × 0.25
W = 1250J
Therefore, 1250Joules of work is done by the jack.
Answer:
(a) Most reactive Metal B
Metal D
Metal A
Least reactive Metal C
(b) (i) Bubbles should form very slowly
(ii) No reaction takes place
Explanation:
(a) The given metals arranged in their order of reactivity are;
Most reactive Metal B
Metal D
Metal A
Least reactive Metal C
The other of reactivity is based on the nature of their reactivity of the metals in air
(b) (i) Based on the reactivity of the metals in air, whereby metal A reacts very slowly and an oxide is formed, we have that, based on the reactivity of the metal A, when mixed with dilute hydrochloric acid, bubbles should form very slowly
(ii) Similarly, given that metal C is unreactive, we have that when small pieces of metal C are added to dilute hydrochloric acid, no reaction takes place.