Adding an atom will increase the repulsion between existing atoms and lone pairs. Added atom will result in bond pair-bond pair and bond pair-lone pair repulsion. The magnitude of the lone pair-bond pair repulsion is greater than the bond pair-bond pair repulsion. The added atom will change the electron geometry and bring about a distortion in the molecular geometry.
Answer is: silicon isotope with mass number 28 has highest relative abundance, this isotope is the most common of these three isotopes.
Ar₁(Si) = 28; the average atomic mass of isotope ²⁸Si.
Ar₂(Si) =29; the average atomic mass of isotope ²⁹Si.
Ar₃(Si) =30; the average atomic mass of isotope ³⁰Si.
Silicon (Si) is composed of three stable isotopes, ₂₈Si (92.23%), ₂₉Si (4.67%) and ₃₀Si (3.10%).
ω₁(Si) = 92.23%; mass percentage of isotope ²⁸Si.
ω₂(Si) = 4.67%; mass percentage of isotope ²⁹Si.
ω₃(Si) = 3.10%; mass percentage of isotope ³⁰Si.
Ar(Si) = 28.086 amu; average atomic mass of silicon.
Ar(Si) = Ar₁(Si) · ω₁(B) + Ar₂(Si) · ω₂(Si) + Ar₃(Si) · ω₃(Si).
28,086 = 28 · 0.9223 + 29 · 0.0467 + 30 · 0.031.
Answer:
the atomic number decreased in 2, from 100 to 100 - 2 = 98. 3) Hence the formed atom has atomic number 98, which is californium, Cf, and the isotope is californium - 253. 4) The item that completes the given alpha decay reaction is: ₉₈²⁵³ Cf.
Explanation:
Answer:
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.
Explanation:
According to the Kelvin–Planck statement of the second law of thermodynamics ,it is not possible to construct a device which operates in cycle and does not produce effect on the environment than the production of work.
We know that
Coefficient of performance is the ratio of desired effect to the work input in a cycle.
Given all option is correct but most appropriate option is a.
So the option a is correct
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.
For moles to grams would be the mole which is 7.9*10^-1 times the molar mass of argon