In 1 mol of CH3OH, you have 4 H-atoms (because 3 H-atoms
are attached to the C-atom, and one H-atom in the OH group). That means
in 0.500 mol of CH3OH, you have 2 H-atoms since it is halved. And then we have Avogadro's constant: 6.02 * 1023.
The question asks for how many hydrogen atoms there are in 0.500 mol CH3OH. Using the numbers that we have (Avogadro's constant and no. of H-atoms), the answer of the question will be something like:
<span>H-atoms in CH3OH = 2 * 6.02 * </span>1023<span> = ~1.2 * 10</span>24
Answer:
135g Na2CO3
Explanation:
I'm going to assume you mean Molality which is mol solute/kg solvent
Molarity would be mol soute/ L solution
we know we have 155g of water which is .155 kg
essentially we have the equation:
mol/kg = 8.20
we substitute .155 in for kg and get:
mol/.155 = 8.20
Solving this gives mol = 1.271
now we must convert to grams using the molar mass
Molar mass Na2CO3 = 106G/mol
so to cancel moles we multiply:
1.271mol x 106g/mol
= 135g
Answer:
H+(aq) + OH-(aq) → H2O(l)
Explanation:
Step 1: Data given
nitrious acid = HNO3
sodium hydroxide = NaOH
Step 2: The unbalance equation
HNO3(aq) + NaOH(aq) →NaNO3(aq) + H2O(l)
The net ionic equation, for which spectator ions are omitted - remember that spectator ions are those ions located on both sides of the equation - will , after canceling those spectator ions in both side (Ba^2+ and Br-), look like this:
H+(aq) + NO3-(aq) + Na+(aq) + OH-(aq) →Na+(aq) +NO3(aq) + H2O(l)
H+(aq) + OH-(aq) → H2O(l)
Answer:
"500 Joule/sec" is the right answer.
Explanation:
The given values are:
Force,
F = 1000 N
Velocity,
s = 10 m
Time,
t = 20 s
Now,
The power will be:
= 
On putting the values, we get
= 
= 
= 