Answer:
99.24%.
Explanation:
- NaCl reacted with AgNO₃ as in the balanced equation:
<em>NaCl + AgNO₃ → AgCl(↓) + NaNO₃,</em>
1.0 mol of NaCl reacts with 1.0 mol of AgNO₃ to produce 1.0 mol of AgCl and 1.0 mol of NaNO₃.
- We need to calculate the no. of moles of AgCl produced:
no. of moles of AgCl = mass/molar mass = (2.044 g)/(143.32 g/mol) = 0.0143 mol.
- Now, we can calculate the no. of moles of NaCl that can precipitated as AgCl (0.0143 mol), these moles represents the no. of moles of pure NaCl in the sample:
<em>using cross multiplication:</em>
1.0 mol of NaCl produce → 1.0 mol of AgCl, from the stichiometry.
∴ 0.0143 mol of NaCl produce → 0.0143 mol of AgCl.
- Now, we can get the mass of puree NaCl in the sample:
mass of pure NaCl = (no. of moles of pure NaCl)(molar mass of NaCl) = (0.0143 mol)(58.44 g/mol) = 0.8357 g.
∴ The percentage of NaCl in the impure sample = [(mass of pure NaCl)/(mass of the impure sample)] x 100 = [(0.8357 g)/(0.8421 g)] x 100 = 99.24%.
A mixture is a system that is made up of two or more substances which are not combined chemically. A pure substance is a system that only has one substance. The following are classified as:
1.water : pure substance
<span>2.blood : mixture</span>
<span>3.the oceans : mixture</span>
<span>4.iron : pure substance
5.brass : mixture</span>
<span>6.uranium : pure substance</span>
<span>7.wine : mixture</span>
<span>8.leather : mixture</span>
<span>9.table salt (NaCl) : pure substance</span>
Answer:
Explanation:
250 cm^3 of 0.2 moldm-3 H2SO4 can be prepared from 150cm^3 of 1.0 moldm^-3 by dilution.
150cm^3 of the 1.0 moldm^-3 stock solution is measured out using a measuring cylinder and transferred into a 250 cm^3 standard volumetric flask and made up to mark. The resulting solution is now 250cm^3 of 0.2 moldm-3 H2SO4.
Answer:
Ur answer is B. I, II, and III
Explanation:
Tectonic plates can interact with each other.
Answer is: <span>a hill over which a wagon is pushed.
</span>For all chemical
reaction some energy is required and that energy is called activation
energy (<span>energy
that needs to be absorbed for a chemical reaction to start)<span>.
There are two types of reaction: endothermic
reaction (chemical reaction that absorbs more energy than it releases)
and exothermic reaction (chemical reaction that releases more energy than
it absorbs).
</span></span>R<span>eactions
occur faster with a catalyst because they require less activation energy.</span>