1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stich3 [128]
3 years ago
7

HELP!!!! WILL MARK BRAINLIEST!!

Physics
1 answer:
Stells [14]3 years ago
8 0
A is the dendrites
B is the cell body
C is the Axon and the little yellow things are called Schwann cells
E is Axon terminals
And the green thing in the cell body is called the Nucleus



Hope this helped

Brainliest is very appreciated
You might be interested in
An electron of mass 9.11 1031 kg has an initial speed of 3.00 105 m/s. It travels in a straight line, and its speed increases to
elena55 [62]

Explanation:

It is given that,

Mass of an electron, m=9.11\times 10^{-31}\ kg

Initial speed of the electron, u=3\times 10^5\ m/s

Final speed of the electron, v=7\times 10^5\ m/s

Distance, d = 5 cm = 0.05 m

(a) The acceleration of the electron is calculated using the third equation of motion as :

a=\dfrac{v^2-u^2}{2d}

a=\dfrac{(7\times 10^5)^2-(3\times 10^5)^2}{2\times 0.05}

a=4\times 10^{12}\ m/s^2

Force exerted on the electron is given by :

F=m\times a

F=9.11\times 10^{-31}\times 4\times 10^{12}

F=3.64\times 10^{-18}\ N

(b) Let W is the weight of the electron. It can be calculated as :

W=mg

W=9.11\times 10^{-31}\times 9.8

W=8.92\times 10^{-30}\ N

Comparison,

\dfrac{F}{W}=\dfrac{3.64\times 10^{-18}}{8.92\times 10^{-30}}

\dfrac{F}{W}=4.08\times 10^{11}

Hence, this is the required solution.

8 0
3 years ago
A top-fuel dragster accelerates from rest to a velocity of 100 m/s in 8 s. What is the acceleration?
seropon [69]

Answer:

100 m/s ÷ 8 = 12.5 m/s

Explanation:

You must put multiply (÷)

4 0
3 years ago
Please help me important will give brainliest
irinina [24]
Pretty sure it’s C. all the others are speeding up. acceleration means gradually (over time) getting faster. So it’s C.
7 0
3 years ago
If you are six feet tall how far back from a 3 foot mirror do you have to stand in order to see yourself completely?
OverLord2011 [107]

Answer:

you would have to stand 6 ft back

Explanation:

7 0
3 years ago
Compare the circular velocity of a particle orbiting in the Encke Division, whose distance from Saturn 133,370 km, to a particle
Ket [755]

Answer:

The particle in the D ring is 1399 times faster than the particle in the Encke Division.

Explanation:

The circular velocity is define as:

v = \frac{2 \pi r}{T}  

Where r is the radius of the trajectory and T is the orbital period

To determine the circular velocity of both particles it is necessary to know the orbital period of each one. That can be done by means of the Kepler’s third law:

T^{2} = r^{3}

Where T is orbital period and r is the radius of the trajectory.

Case for the particle in the Encke Division:

T^{2} = r^{3}

T = \sqrt{(133370 Km)^{3}}

T = \sqrt{(2.372x10^{15} Km)}

T = 4.870x10^{7} Km

It is necessary to pass from kilometers to astronomical unit (AU), where 1 AU is equivalent to 150.000.000 Km ( 1.50x10^{8} Km )

1 AU is defined as the distance between the earth and the sun.

\frac{4.870x10^{7} Km}{1.50x10^{8}Km} . 1AU

T = 0.324 AU

But 1 year is equivalent to 1 AU according with Kepler’s third law, since 1 year is the orbital period of the earth.

T = \frac{0.324 AU}{1 AU} . 1 year

T = 0.324 year

That can be expressed in units of days

T = \frac{0.324 year}{1 year} . 365.25 days  

T = 118.60 days

<em>Circular velocity for the particle in the </em><em>Encke Division</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (133370 Km)}{(118.60 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

118.60 days .\frac{86400 s}{1 day} ⇒ 10247040 s

133370 Km .\frac{1000 m}{1 Km} ⇒ 133370000 m

v = \frac{2 \pi (133370000 m)}{(10247040 s)}

v = 81.778 m/s

Case for the particle in the D Ring:

For the case of the particle in the D Ring, the same approach used above can be followed

T^{2} = r^{3}

T = \sqrt{(69000 Km)^{3}}

T = \sqrt{(3.285x10^{14} Km)}

T = 1.812x10^{7} Km

\frac{1.812x10^{7} Km}{1.50x10^{8}Km} . 1 AU

T = 0.120 AU

T = \frac{0.120 AU}{1 AU} . 1 year

T = 0.120 year

T = \frac{0.120 year}{1 year} . 365.25 days  

T = 43.83 days

<em>Circular velocity for the particle in </em><em>D Ring</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (69000 Km)}{(43.83 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

43.83 days . \frac{86400 s}{1 day} ⇒ 3786912 s

69000 Km . \frac{1000 m}{ 1 Km} ⇒ 69000000 m

v = \frac{2 \pi (69000000 m)}{(3786912 s)}

v = 114.483 m/s

 

\frac{114.483 m/s}{81.778 m/s} = 1.399            

The particle in the D ring is 1399 times faster than the particle in the Encke Division.  

7 0
3 years ago
Other questions:
  • A photon with wavelength λ = 0.0830 nm is incident on an electron that is initially at rest. if the photon scatters in the backw
    6·1 answer
  • A 50 g mass hanger hangs motionless from a partially stretched spring. When a 80 gram mass is added to the hanger, the spring st
    10·1 answer
  • Why does the moon go through phases?
    13·2 answers
  • Which type of tissue is most likely to prevent a kidney from "floating"?
    13·1 answer
  • a batter hits a homerun in which the ball travels 110m horizontally with no appreciable air resistance. If the ball left the bat
    11·1 answer
  • Older railroad tracks in the U.S. are made of 12-m-long pieces of steel. When the tracks are laid, gaps are left between section
    7·2 answers
  • A box has sides of 10 cm, 8.2 cm, and 3.5 cm. What is its volume?
    6·1 answer
  • PLEASE HELP In a bag are 7 red, 9 blue, 2 yellow and 4 green marbles. If you draw out a marble at random, what the probability t
    11·1 answer
  • A ball is moving across a level platform 1.6m above the floor. After rolling off the ball hits the floor 20 from the base of the
    7·2 answers
  • What will be the mass of a body at the center of the earth as compared to other places on
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!