1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
3 years ago
8

Compare the circular velocity of a particle orbiting in the Encke Division, whose distance from Saturn 133,370 km, to a particle

orbiting in Saturn's D Ring, whose distance from Saturn is 69000 km. How many times larger is the velocity of the particle in the D Ring compared to the particle in the Encke Division?
Physics
1 answer:
Ket [755]3 years ago
7 0

Answer:

The particle in the D ring is 1399 times faster than the particle in the Encke Division.

Explanation:

The circular velocity is define as:

v = \frac{2 \pi r}{T}  

Where r is the radius of the trajectory and T is the orbital period

To determine the circular velocity of both particles it is necessary to know the orbital period of each one. That can be done by means of the Kepler’s third law:

T^{2} = r^{3}

Where T is orbital period and r is the radius of the trajectory.

Case for the particle in the Encke Division:

T^{2} = r^{3}

T = \sqrt{(133370 Km)^{3}}

T = \sqrt{(2.372x10^{15} Km)}

T = 4.870x10^{7} Km

It is necessary to pass from kilometers to astronomical unit (AU), where 1 AU is equivalent to 150.000.000 Km ( 1.50x10^{8} Km )

1 AU is defined as the distance between the earth and the sun.

\frac{4.870x10^{7} Km}{1.50x10^{8}Km} . 1AU

T = 0.324 AU

But 1 year is equivalent to 1 AU according with Kepler’s third law, since 1 year is the orbital period of the earth.

T = \frac{0.324 AU}{1 AU} . 1 year

T = 0.324 year

That can be expressed in units of days

T = \frac{0.324 year}{1 year} . 365.25 days  

T = 118.60 days

<em>Circular velocity for the particle in the </em><em>Encke Division</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (133370 Km)}{(118.60 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

118.60 days .\frac{86400 s}{1 day} ⇒ 10247040 s

133370 Km .\frac{1000 m}{1 Km} ⇒ 133370000 m

v = \frac{2 \pi (133370000 m)}{(10247040 s)}

v = 81.778 m/s

Case for the particle in the D Ring:

For the case of the particle in the D Ring, the same approach used above can be followed

T^{2} = r^{3}

T = \sqrt{(69000 Km)^{3}}

T = \sqrt{(3.285x10^{14} Km)}

T = 1.812x10^{7} Km

\frac{1.812x10^{7} Km}{1.50x10^{8}Km} . 1 AU

T = 0.120 AU

T = \frac{0.120 AU}{1 AU} . 1 year

T = 0.120 year

T = \frac{0.120 year}{1 year} . 365.25 days  

T = 43.83 days

<em>Circular velocity for the particle in </em><em>D Ring</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (69000 Km)}{(43.83 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

43.83 days . \frac{86400 s}{1 day} ⇒ 3786912 s

69000 Km . \frac{1000 m}{ 1 Km} ⇒ 69000000 m

v = \frac{2 \pi (69000000 m)}{(3786912 s)}

v = 114.483 m/s

 

\frac{114.483 m/s}{81.778 m/s} = 1.399            

The particle in the D ring is 1399 times faster than the particle in the Encke Division.  

You might be interested in
. Friction is a rubbing force that ___________ a spinning yo-yo.
Advocard [28]
The yo-yo speeds up when you rub it
3 0
3 years ago
Read 2 more answers
When sound is created it travels to the car through a
Rasek [7]

A sound wave is a longitudinal wave caused by vibrations and carried through a substance. The particles of the substance, such as air particles, vibrate back and forth along the path that the sound waves travel. Sound is transmitted through the vibrations and collisions of the particles.

This could maybe help you with your answer.

4 0
3 years ago
Using examples, explain why the first and second Newton laws of motion are significant for living organisms.
Triss [41]

Answer:

1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it

2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object

Explanation:

1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions

2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.

6 0
3 years ago
A spinning ice skater will slow down if she extends her arms away from her body. Which of the following statements explains this
klasskru [66]
Drag from her armas would slow her down if she was spinning at a fast speed
6 0
3 years ago
Water is circulating through a closed system of pipes in a two floor apartment. On the first floor, the water has a gauge pressu
anastassius [24]

Answer:

The value of gauge pressure at outlet = -38557.224 pascal

Explanation:

Apply Bernoulli' s Equation

\frac{P_{1}}{9810} + \frac{V_{1} ^{2}}{19.62} + h_{1} = \frac{P_{2}}{9810} + \frac{V_{2} ^{2}}{19.62} + h_{2} --------------(1)

Where

P_{1} =  Gauge pressure at inlet = 3.70105 pascal

V_{1} = velocity at inlet =  2.4 \frac{m}{sec}

P_{2} = Gauge pressure at outlet = we have to calculate

V_{2} = velocity at outlet = 3.5 \frac{m}{sec}

h_{2} - h_{1} = 3.6 m

Put all the values in equation (1) we get,

⇒ \frac{3.70105}{9810} + \frac{2.4 ^{2}}{19.62} = \frac{P_{2}}{9810} + \frac{3.5 ^{2}}{19.62} + 3.6

⇒ 0.294 = \frac{P_{2}}{9810} + 0.6244 + 3.6

⇒ \frac{P_{2}}{9810} = 0.294 - 0.6244 - 3.6

⇒ \frac{P_{2}}{9810} = - 3.9304

⇒ P_{2} = - 38557.224 pascal

This is the value of gauge pressure at outlet.

3 0
3 years ago
Other questions:
  • Literally don't know how to do this.
    9·1 answer
  • Of the following telescopes, which one would best be able to pierce through the Earth's atmosphere and function on the surface o
    6·2 answers
  • In addition to observing wind speed, wind direction, temperature, air pressure, and humidity, meteorologists observe what?
    5·2 answers
  • What force causes Earth's centripetal motion?
    9·2 answers
  • Suppose you were to fill a balloon with air then let go of it withoutntying it closed. What causes the balloon to fly away?
    7·2 answers
  • The coil of an ac generator has 50 loops and a cross-sectional area of LaTeX: 0.2~m^20.2 m 2 . What is the maximum emf that can
    14·1 answer
  • A kangaroo jumps up with an initial velocity of
    12·1 answer
  • One difference between a hypothesis and a theory is that a hypothesis
    9·1 answer
  • Can someone please help me out with this question thanks
    10·1 answer
  • When three people with a total mass of 2.00 x 102 kg step into their 1.200 x 103 kg car, the car’s
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!