1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
3 years ago
8

Compare the circular velocity of a particle orbiting in the Encke Division, whose distance from Saturn 133,370 km, to a particle

orbiting in Saturn's D Ring, whose distance from Saturn is 69000 km. How many times larger is the velocity of the particle in the D Ring compared to the particle in the Encke Division?
Physics
1 answer:
Ket [755]3 years ago
7 0

Answer:

The particle in the D ring is 1399 times faster than the particle in the Encke Division.

Explanation:

The circular velocity is define as:

v = \frac{2 \pi r}{T}  

Where r is the radius of the trajectory and T is the orbital period

To determine the circular velocity of both particles it is necessary to know the orbital period of each one. That can be done by means of the Kepler’s third law:

T^{2} = r^{3}

Where T is orbital period and r is the radius of the trajectory.

Case for the particle in the Encke Division:

T^{2} = r^{3}

T = \sqrt{(133370 Km)^{3}}

T = \sqrt{(2.372x10^{15} Km)}

T = 4.870x10^{7} Km

It is necessary to pass from kilometers to astronomical unit (AU), where 1 AU is equivalent to 150.000.000 Km ( 1.50x10^{8} Km )

1 AU is defined as the distance between the earth and the sun.

\frac{4.870x10^{7} Km}{1.50x10^{8}Km} . 1AU

T = 0.324 AU

But 1 year is equivalent to 1 AU according with Kepler’s third law, since 1 year is the orbital period of the earth.

T = \frac{0.324 AU}{1 AU} . 1 year

T = 0.324 year

That can be expressed in units of days

T = \frac{0.324 year}{1 year} . 365.25 days  

T = 118.60 days

<em>Circular velocity for the particle in the </em><em>Encke Division</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (133370 Km)}{(118.60 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

118.60 days .\frac{86400 s}{1 day} ⇒ 10247040 s

133370 Km .\frac{1000 m}{1 Km} ⇒ 133370000 m

v = \frac{2 \pi (133370000 m)}{(10247040 s)}

v = 81.778 m/s

Case for the particle in the D Ring:

For the case of the particle in the D Ring, the same approach used above can be followed

T^{2} = r^{3}

T = \sqrt{(69000 Km)^{3}}

T = \sqrt{(3.285x10^{14} Km)}

T = 1.812x10^{7} Km

\frac{1.812x10^{7} Km}{1.50x10^{8}Km} . 1 AU

T = 0.120 AU

T = \frac{0.120 AU}{1 AU} . 1 year

T = 0.120 year

T = \frac{0.120 year}{1 year} . 365.25 days  

T = 43.83 days

<em>Circular velocity for the particle in </em><em>D Ring</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (69000 Km)}{(43.83 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

43.83 days . \frac{86400 s}{1 day} ⇒ 3786912 s

69000 Km . \frac{1000 m}{ 1 Km} ⇒ 69000000 m

v = \frac{2 \pi (69000000 m)}{(3786912 s)}

v = 114.483 m/s

 

\frac{114.483 m/s}{81.778 m/s} = 1.399            

The particle in the D ring is 1399 times faster than the particle in the Encke Division.  

You might be interested in
How many million kilometers is one astronomical unit.
Andrews [41]

Answer:

150 million kilometres

Explanation:

The astronomical unit (symbol: au, or AU or AU) is a unit of length, roughly the distance from Earth to the Sun and equal to 150 million kilometres (93 million miles) or 8.3 light minutes.

6 0
2 years ago
The blades in a blender rotate at a rate of 6800 rpm . When the motor is turned off during operation, the blades slow to rest in
tangare [24]
The angular acceleration of the blade when it's switched off is (-6800 rev/min) divided by (2.8 sec) = -2,428.6 rev/(min-sec) = -40.5 rev/sec^2 .
5 0
3 years ago
A transverse wave on a string is described by the wave functiony(x, t) = 0.350 sin (1.25x + 99.6t)where x and y are in meters an
ella [17]

The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.

<h3>How to solve for the time interval</h3>

We have y = 0.175

y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175

sin (1.25x + 99.6t) = 0.175

sin (1.25x + 99.6t) = 0.5

99.62 = pi/6

t1 = 5.257 x 10⁻³

99.6t = pi/6 + 2pi

= 0.0683

The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.

b. we have k = 1.25, w = 99.6t

v = w/k

99.6/1.25 = 79.68

s = vt

= 79.68 * 0.0683

= 5.02

Read more on waves here

brainly.com/question/25699025

#SPJ4

complete question

A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?

7 0
2 years ago
How many number of musicians constitute a big band?
nikitadnepr [17]
Big band is music group (a group of people who perform instrumental and/or vocal music ) playing jazz or jazz-influenced popular music and which was popular during the Swing Era from the mid-1930s until the late 1940s. These big bands contained saxophones, trumpets, trombone and other instruments and typically consisted of approximately 12 to 25 musicians.
6 0
3 years ago
A 5 kgkg sphere having a charge of ++ 8 μCμC is placed on a scale, which measures its weight in newtons. A second sphere having
Mrac [35]

Answer:

 F_Balance = 46.6 N    ,m' = 4,755 kg

Explanation:

In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in

          ∑ F = 0

          Fe –W + F_Balance = 0

         F_Balance = - Fe + W

           

The electric force is given by Coulomb's law

          Fe = k q₁ q₂ / r₂

The weight is

          W = mg

Let's replace

           F_Balance = mg - k q₁q₂ / r₂

Let's reduce the magnitudes to the SI system

          q₁ = + 8 μC = +8 10⁻⁶ C

          q₂ = - 3 μC = - 3 10⁻⁶ C

          r = 0.3 m = 0.3 m

Let's calculate

         F_Balance = 5 9.8 - 8.99 10⁹  8 10⁻⁶ 3 10⁻⁶ / (0.3)²

         F_Balance = 49 - 2,397

         F_Balance = 46.6 N

This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.

Mass reading is

          m' = F_Balance / g

          m' = 46.6 /9.8

          m' = 4,755 kg

6 0
3 years ago
Other questions:
  • Two infinite, uniformly charged, flat surfaces are mutually perpendicular. One of the sheets has a charge density of +60 pC/m2,
    9·2 answers
  • A person pushes a refrigerator across a horizontal floor. The mass of the refrigerator is 110 kg, the coefficient of static fric
    12·1 answer
  • Suppose certain coins have weights that are normally distributed with a mean of 5.805 g5.805 g and a standard deviation of 0.071
    13·1 answer
  • The formula to calculate velocity is
    11·1 answer
  • How easy is it to die in quick sand (I know the answer to this one too i just want to see who understands)
    11·2 answers
  • A sphere has a mass of 8.5 kg and a radius of 10cm. How much work is it necessary to do on the ball to get it to a speed of 6.0m
    14·1 answer
  • Which road would exert the LEAST amount of friction on a car?
    14·1 answer
  • The definition of Force
    13·2 answers
  • PLEASE HELP ME WITH THIISSSSS UGGHHH
    10·1 answer
  • How to Estimate your age in seconds ?<br><br><br><br><br><br><br><br><br>No Spamming ~​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!