I believe the correct answer is D. Because object A on the pH scale reads pH=3. Which means it is more acidic in nature and thus possess a greater hydrogen or hydronium ion concentration than object B, which has a higher value on the pH scale. Object B would thus have a lower hydronium ion concentration than Object A.
An expert in or student of the branch of science concerning the chemical composition of the earth and its rocks and minerals.
Hey...
Use the molarity formula
M=moles/L and then convert to grams
0.07268*0.15=moles
<span>0.010902 mol
</span>Pb(NO3)2
1 mole=331.22g
0.010902 moles=
3.61 g
In one mole of C7H18 there are 18 moles of H (the number folowing the H)*
>> the ratio is 1:18
In 5.2 moles of C7H18 there are x moles of H
>> the ratio is 5.2:x
Cross multiply the two ratios
1x = 18×5.2
x = 93.6 moles of H
>> In 5.2 moles of C7H18 there are 93.6 moles of H
* This isnt a rule that you can always use.
However to find the mole of a certain element in a certain molucle all you have to do is count how many moles of the element are present in the molecule.
>> example1 >> H2O ;
2 H and 1 O
>> example2 >> CH3COOH ; [you add up all the moles of the same element]
(1+1) 2 C , (3+1) 4 H and (1+1) 2 O
>> example3 >> Mg(OH)2 ; [you multiply whetever is in parenthesis by the number after it 2] 1 Mg , (1×2) 2 O and (1×2) 2 H