<span>C. New substances are always produced in chemical changes, which is not the case with physical changes. For example, when you cut wood into smaller pieces you still have wood in the end. But, with a chemical change you change the substance's whole composition. For example when you add two hydrogen's to one oxygen you have water and it can't break down from that. </span><span />
I believe the answer to this is;
Substances that make up a mixture RETAIN their own properties once they are combined to form a mixture.
I believe the answer is RETAIN because the combination in question is a MIXTURE. A mixture is a combination of various substances. In the case of mixtures, all the substances retain their own properties. That is; they remain the way they are and do not change. An example of a mixture is air. And to prove that air is a mixture;
The components of air retain their individual properties.
The components of air cannot be represented by a chemical formula
When the components of air combine, they do not show any form of chemical change, like heat release, change in pressure.....
Hope i helped, have a nice day.
Answers are Intermolecular and London dispersion
<u>Answer:</u>
<em>Indonesia Bank one of the largest consumers of electricity or energy in any form depends on fossil fuels for energy.</em>
<u>Explanation:</u>
Utilisation of solar energy for their day to day basis such that the energy need is met would mean less use of fossil fuels and lesser greenhouse gases.
And also damage to the environment and this is a very important step by Indonesia to do their bit towards environment by controlling pollution and being largest consumer turning green would mean a lot.
Answer:
Kc for this equilibrium is 2.30*10⁻⁶
Explanation:
Equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction and the concentrations of reactants and products are held constant.
Being:
aA + bB ⇔ cC + dD
the equilibrium constant Kc is defined as:
![Kc=\frac{[C]^{c}*[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%2A%5BD%5D%5E%7Bd%7D%20%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
In other words, the constant Kc is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients by the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients. Kc is constant for a given temperature, that is to say that as the reaction temperature varies, its value varies.
In this case, being:
2 NH₃(g) ⇔ N₂(g) + 3 H₂(g)
the equilibrium constant Kc is:
![Kc=\frac{[N_{2} ]*[H_{2} ]^{3} }{[NH_{3} ]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BN_%7B2%7D%20%5D%2A%5BH_%7B2%7D%20%5D%5E%7B3%7D%20%20%7D%7B%5BNH_%7B3%7D%20%5D%5E%7B2%7D%20%7D)
Being:
- [N₂]= 0.0551 M
- [H₂]= 0.0183 M
- [NH₃]= 0.383 M
and replacing:

you get:
Kc= 2.30*10⁻⁶
<u><em>Kc for this equilibrium is 2.30*10⁻⁶</em></u>