1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
3 years ago
8

DetermiOne of the lines in the Balmer series of the hydrogen atom emission spectrum is at 397 nm. It results from a transition f

rom an upper energy level to n=2. What is the principal quantum number of the upper level?ne the initial energy level, ninitial from which the electron in the hydrogen relaxed from to the final energy level, nfinal , 4, if the emitted light has a frequency equal to 74 x 1012 (1/sec). Is this wavelength in the visible region of the electromagnetic spectrum?
Physics
1 answer:
larisa86 [58]3 years ago
6 0

Answer:

a)n =7 , b) n = 5

Explanation:

The energy levels of the hydrogen atom is described by the Bohr model

       E_{n} = - 13.606   1/n²

This equation energy is given in elector volts and n is an integer

A transition occurs when the electro sees from a superior to a lower state

       E₀ - E_{n} = -13.606 (1/n_{f}² - 1/n₀²)

Let's apply this expression

         n₀ = 2

Let's look for the energy of the different levels and subtract it

n₀          E_{n} (eV)

1            -13,606

2            -3.4015

3           - 1.5118

4           -0.850375

5           -0.54424

6           -0.3779

7           -0.2777

The wavelength of the transition is 397 nm = 397 10⁻⁹ m

The speed of light is related to wavelength and frequency

       c = λ f

The Planck equation gives the energy of a transition

      E = h f

      E = h c /λ

Let's calculate

     E = 6.63 10⁻³⁴ 3 10⁸/397 10⁻⁹

     E = 5.01 10⁻¹⁹ J

Let's reduce to eV

     E = 5.01 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)

     E = 3.1313 eV

Let's examine the possible transitions from the initial level ni = 2

     ΔE = E_{2} - E_{n} = -3.1313

     En = 3.13 -3.4015

     E_{n} = 0.2702 eV

When examining the table we see that the level that this energy has is the level of n = 7

Part B      the transition is in the infrared

The frequency is 74 10¹² Hz

We use the Planck equation

       E = h f

       E = 6.63 10⁻³⁴ 74 10¹²

       E = 4.9062 10⁻²⁰ J

       E = 4.9062 10⁻²⁰ / 1.6 10⁻¹⁹

       E = 0.3066 eV

We look for the level with the energy difference

     ΔE = E₄- E_{n} = 0.3066

     E_{n} = 0.3066 - 0.85037

     E_{n} = -0.54376 eV

When examining the table this energy has the level n = 5, therefore from this level the transition occurs

You might be interested in
How long will it take an object to hit the ground if dropped from 100 meters
mash [69]

Answer:

The answer depends on what object you are dropping. Are you dropping a balloon or a car? (I'm joking 'bout that one.) If the mass of the object is very little, then it might drop slower. If the mass is bigger, then it might drop faster.

Good luck!

Explanation:

8 0
3 years ago
Read 2 more answers
How does Lenz's Law illustrate the concept that "you can't get
Crazy boy [7]

Answer:

When there is a change in magnetic flux linkage through a loop of wire, an electromotive force is induced in the loop, according to the Faraday-Newmann-Lenz Law:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

The negative sign in the formula represents Lenz's Law, and tells us about the direction of the electromotive force.

In fact, the negative sign means that the direction of the induced emf is such that to oppose to the change in the magnetic flux that originated the induced emf.

This is a consequence of the law of conservation of energy: no energy can be created out of nowhere. In fact, when the emf is induced in the loop, electrical energy appears in the circuit; however, this electric energy cannot come out of nowhere. Instead, it is just "created" from the transformation of some other form of energy (for instance, the mechanical energy that is used to move the loop in the magnetic field, and changing its magnetic flux).

The negative sign in Lenz's Law tells exactly this: the direction of the induced emf is such that it opposes the initial change in magnetic flux that generated the induced emf, so that overall the total energy is conserved.

5 0
3 years ago
Explain: What happens to the velocity of a stream as the size of the sediment increases?
artcher [175]

Answer:

Also, as stream depth increases, the hydraulic radius increases thereby making the stream more free flowing. Both of these factors lead to an increase in stream velocity. The increased velocity and the increased cross-sectional area mean that discharge increases.

8 0
2 years ago
What is the maximum range of most handheld fire extinguishers?        A. 50 yd   B. 30 ft   C. 10 ft   D. 100 ft
alex41 [277]
C- 10ft. Hope this helped. Have a great day! :D
5 0
3 years ago
Read 2 more answers
A ray of light passes from air into a block of clear plastic. How does the angle of incidence in the air compare to the angle of
andre [41]

Answer:

The angle of incidence is greater than the angle of refraction

Explanation:

Refraction occurs when a light wave passes through the boundary between two mediums.

When a ray of light is refracted, it changes speed and direction, according to Snell's Law:

n_1 sin \theta_1 = n_2 sin \theta_2

where :

n_1 is the index of refraction of the 1st medium

n_2 is the index of refraction of the 2nd medium

\theta_1 is the angle of incidence (the angle between the incident ray and the normal to the boundary)

\theta_2 is the angle of refraction (the angle between the refracted ray and the normal to the boundary)

In this problem, we have a ray of light passing from air into clear plastic. We have:

n_1=1.00 (index of refraction of air)

n_2=1.50 approx. (index of refraction in clear plastic)

Snell's Law can be rewritten as

sin \theta_2 =\frac{n_1}{n_2}sin \theta_1

And since n_2>n_1, we have

\frac{n_1}{n_2}

And so

\theta_2

Which means that

The angle of incidence is greater than the angle of refraction

6 0
3 years ago
Other questions:
  • A car of the future requires 15kW of power to travel along a level road at 65km/h. A physics student wishes to use the car to dr
    11·1 answer
  • Four students are comparing vectors and scalars. The chart contains each students statements about vectors and scalars
    9·1 answer
  • On a coordinate plane, vertex A for triangle ABC is located at (6,4). Triangle ABC is dilated by a scale factor of 0.5 with the
    12·1 answer
  • A ball is thrown directly upwards. Is there a point of trajectory where the ball has zero acceleration
    6·1 answer
  • HELP ASAP REAL ANSWERS PLEASE You push a box across the floor with a force of 30 N. You push it 15 meters in 8 seconds. How much
    5·2 answers
  • How are electromagnetic waves different from sound or water waves?
    14·1 answer
  • What would be the weight (in Newtons) of a person with a mass of 80 kg on Earth, where the acceleration due to gravity is approx
    13·1 answer
  • A football player kicks a football, from ground level, with an initial velocity of 27.0 m/s at an angle 30° above the horizontal
    11·1 answer
  • Blonde hair is produced by inheriting double recessive alleles (bb) from one’s parents. What is the probability of their offspri
    15·1 answer
  • A ball is dropped off a building and falls past a window that is 2.2m long. If it takes .28s for the ball to cross the window wh
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!