Answer:
4.17 m/s²
Explanation:
We are told the reaction time is 0.2 s. Now, during this reaction time the car is going to travel an additional distance of
: x = u × t = 40 × 0.2 = 8 m
where u is the initial velocity of the car which is 40.0 m/s.
We are told that he had 200 m to stop before applying brakes. Thus, after applying brakes, he now has a distance to cover of; s = 200 - 8 = 192 m
Since vehicle is coming to rest acceleration would be negative, thus using Newton's equation of motion, we have;
v
² = u² - 2as
v = 0 m/s since it's coming to rest
u = 40 m/s
s = 192 m
Thus;
0² = 40² - 2(a)(192)
0² = 1600 - 384a
a = 1600/384
a = 4.17 m/s²
Two forces F<span>1 and </span>F<span>2 act on the screw eye. The resultant force </span>FR<span> has a magnitude of 125 lb and the coordinate direction angles shown in (Figure 1) . Determine the magnitude of </span>F<span>2. Determine the coordinate direction angle </span>α<span>2 of </span>F<span>2. Determine the coordinate direction angle </span>β<span>2 of </span>F<span>2. Determine the coordinate direction angle </span>γ<span>2 of </span>F<span>2.</span>
It's important to know that diffraction gratings can be identified by the number of lines they have per centimeter. Often, more lines per centimeter is more useful because the images separation is greater when this happens. That is, the distance between lines increases.
<h2>Therefore, the answer is 2.</h2>
I believe it she should use the first aid kit next
Explanation:
that's impossible,the radius of the earth can't decrease when the mass doubles!