Gravity<span> is measured by the acceleration that it gives to freely falling objects. At Earth's surface the acceleration of </span>gravity<span> is about 9.8 metres (32 feet) per second per second.</span>
The velocity of the boat after the package is thrown is 0.36 m/s.
<h3>
Final velocity of the boat</h3>
Apply the principle of conservation of linear momentum;
Pi = Pf
where;
- Pi is initial momentum
- Pf is final momentum
v(74 + 135) = 15 x 5
v(209) = 75
v = 75/209
v = 0.36 m/s
Thus, the velocity of the boat after the package is thrown is 0.36 m/s.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
Answer:
a) 2.87 m/s
b) 3.23 m/s
Explanation:
The avergare velocity can be found dividing the length traveled d by the total time t.
a)
For the first part we easily know the total traveled length which is:
d = 50.2 m + 50.2 m = 100.4 m
The time can be found dividing the distance by the velocity:
t1 = 50.2 m / 2.21 m/s = 22.7149 s
t2 = 50.2 m / 4.11 m/s = 12.2141 s
t = t1 +t2 = 34.9290 s
Therefore, the average velocity is:
v = d/t =2.87 m/s
b)
Here we can easily know the total time:
t = 1 min + 1.16 min = 129.6 s
Now the distance wil be found multiplying each velocity by the time it has travelled:
d1 = 2.21 m/s * 60 s = 132.6 m
d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m
d = 418.656 m
Therefore, the average velocity is:
v = d/t =3.23 m/s
Answer:
Moment of inertia of the system is 289.088 kg.m^2
Explanation:
Given:
Mass of the platform which is a uniform disk = 129 kg
Radius of the disk rotating about vertical axis = 1.61 m
Mass of the person standing on platform = 65.7 kg
Distance from the center of platform = 1.07 m
Mass of the dog on the platform = 27.3 kg
Distance from center of platform = 1.31 m
We have to calculate the moment of inertia.
Formula:
MOI of disk = 
Moment of inertia of the person and the dog will be mr^2.
Where m and r are different for both the bodies.
So,
Moment of inertia
of the system with respect to the axis yy.
⇒ 
⇒ 
⇒ 
⇒
The moment of inertia of the system is 289.088 kg.m^2